organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(1-Acetyl-2-oxo­propyl­­idene)­hydrazino]-N-(pyrimidin-2-yl)benzene­sulfonamide

aDepartment of Chemistry, Udai Pratap College (Autonomous), Varanasi 221 002, India, bDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India, and cDepartment of Inorganic and Physical Chemistry, Indian Institute of Sciences, Bangalore 560 012, India
*Correspondence e-mail: drkaushalbhu@yahoo.co.in

(Received 13 May 2009; accepted 18 May 2009; online 23 May 2009)

In the title compound, C15H15N5O4S, the dihedral angle between the pyrimidine and benzene rings is 84.56 (2)°. Intra­molecular hydrazine–carbonyl N—H⋯O and inter­molecular sulfonamide–pyridimine N—H⋯N hydrogen bonds stabilize the mol­ecular and crystal structures, respectively.

Related literature

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004[Abbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 217-223.]); Badr (2008[Badr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143-1149.]); Gale et al. (2007[Gale, G. A., Kirtikara, K., Pittayakhajonwut, P., Sivichai, S., Thebtaranonth, Y., Thongpanchang, C. & Vichai, V. (2007). Pharmacol. Ther. 115, 307-351.]); Hanafy et al. (2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol. 48, 47-50.]); Novinson et al. (1976[Novinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem. 19, 517-520.]); Supuran et al. (2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]). For the synthesis of the title compound, see: Goyal & Bhargava (1989[Goyal, R. N. & Bhargava, S. (1989). Curr. Sci. (India), 58, 287-290.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N5O4S

  • Mr = 361.38

  • Monoclinic, P 21 /n

  • a = 11.354 (3) Å

  • b = 5.7875 (13) Å

  • c = 25.974 (6) Å

  • β = 101.877 (4)°

  • V = 1670.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.957

  • 17935 measured reflections

  • 3999 independent reflections

  • 3164 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.07

  • 3999 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.01 2.654 (2) 131
C15—H15⋯O4i 0.93 2.46 3.262 (3) 144
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfa drugs and their derivatives have attracted much attention due to their wide spectrum of applications as compounds with anti-bacterial (Badr, 2008), anti-fungal (Hanafy et al., 2007), anti-viral (Supuran et al., 2003), anti-malarial (Gale et al., 2007), and anti-cancer (Abbate et al., 2004) activities. Although the title compound (I) been reported in the literature (Goyal & Bhargava, 1989), its crystal structure was not reported. The molecule of (I), Fig. 1, is-non planar as seen in arrangement of the two aromatic moieties attached to sulfonamide, –NHSO2-, group; the C1—S1—N1—C12 torsion angle is 68.66 (15)°. Within the molecule, there is a prominent intramolecular interaction between the hydrazo-N—H and the carbonyl-O3 atoms, Fig. 2 and Table 1. Intermolecular hydrogen bonds formed between centrosymmetrically related molecules involving the sulfonamide-N—H and the pyrimidine-N4 atoms lead to dimeric aggregates, Fig. 2 and Table 1.

Related literature top

For background on sulfa compounds, see: Abbate et al. (2004); Badr (2008); Gale et al. (2007); Hanafy et al. (2007); Novinson et al. (1976); Supuran et al. (2003). For synthesis of the title compound, see: Goyal & Bhargava (1989).

Experimental top

Compound (I) was synthesized using the literature procedure (Novinson et al., 1976) as follows. Sulfadiazine (2 mmol, 501 mg) and sodium nitrite (~4 mmol, 300 mg) were dissolved separately in conc. HCl (2 ml) and distilled water (10 ml), respectively, followed by their cooling on crushed ice. The cooled sodium nitrite solution was added to the sulfdiazine solution with constant stirring while maintaining ice-cold temperature. The resulting yellow solution was added to a mixture of acetyl acetone (2 mmol, 0.2 ml) and sodium acetate (~37 mmol, 3 g) in distilled water (15 ml) with continuous stirring. The stirring was continued for 2 h maintaining the temperature of the reaction vessel between 293–298 K. The resulting solids were filtered, washed with water, ethanol and finally, by diethyl ether. The crude product was recrystallized from a water–ethanol mixture (50% v/v) and dried in vacuo. Crystals of (I) were developed by layering its supersaturated solution in ethanol with diethylether and leaving for a few days.

Yield 78%. Spectroscopic anaylysis: 1H NMR (DMSO-d6, TMS, δ p.p.m.) 13.51 (1H, NH) 11.79 (1H, NH), 8.51–7.04 (7H, Ar—H), 2.54–2.42 (6H, CH3). 13C NMR (DMSO-d6, TMS, δ p.p.m.) 197.41, 196.40 (>CO), 158.3, 156.8, 145.44 (>CC<), 135.4, 135.3, 129.35, 115.73 (ArC), 31.18, 26.24 (CH3).

Refinement top

All H atoms were placed in the idealized positions with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2—1.5 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of (I) showing intermolecular and intramolecular hydrogen bonding, as thin lines.
4-[2-(1-Acetyl-2-oxopropylidene)hydrazino]-N-(pyrimidin-2- yl)benzenesulfonamide top
Crystal data top
C15H15N5O4SF(000) = 752
Mr = 361.38Dx = 1.437 Mg m3
Monoclinic, P21/nMelting point: 508 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.354 (3) ÅCell parameters from 489 reflections
b = 5.7875 (13) Åθ = 2.5–27.5°
c = 25.974 (6) ŵ = 0.23 mm1
β = 101.877 (4)°T = 293 K
V = 1670.3 (7) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
3999 independent reflections
Radiation source: fine-focus sealed tube3164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0.3 pixels mm-1θmax = 28.2°, θmin = 1.6°
ω scansh = 1414
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.947, Tmax = 0.957l = 3334
17935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycleSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.3686P]
where P = (Fo2 + 2Fc2)/3
3999 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H15N5O4SV = 1670.3 (7) Å3
Mr = 361.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.354 (3) ŵ = 0.23 mm1
b = 5.7875 (13) ÅT = 293 K
c = 25.974 (6) Å0.24 × 0.22 × 0.20 mm
β = 101.877 (4)°
Data collection top
Bruker SMART APEX
diffractometer
3999 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
3164 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.957Rint = 0.027
17935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
3999 reflectionsΔρmin = 0.27 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63840 (13)0.4007 (3)0.17280 (6)0.0382 (3)
C20.65017 (14)0.2375 (3)0.21231 (6)0.0423 (4)
H20.68610.09580.20850.051*
C30.60841 (14)0.2856 (3)0.25745 (6)0.0442 (4)
H30.61720.17750.28450.053*
C40.55332 (13)0.4960 (3)0.26228 (6)0.0403 (3)
C50.54124 (15)0.6595 (3)0.22244 (7)0.0441 (4)
H50.50360.79980.22580.053*
C60.58527 (14)0.6128 (3)0.17784 (6)0.0435 (4)
H60.57930.72290.15130.052*
C70.41088 (16)0.7698 (3)0.35557 (7)0.0508 (4)
C80.32001 (18)0.9556 (4)0.35144 (8)0.0640 (5)
C90.2914 (2)1.0962 (4)0.30216 (10)0.0776 (6)
H9A0.22781.02300.27750.116*
H9B0.36171.10780.28710.116*
H9C0.26631.24800.31020.116*
C100.46123 (17)0.6545 (4)0.40679 (7)0.0588 (5)
C110.4767 (3)0.7965 (5)0.45552 (9)0.0890 (8)
H11A0.51220.70370.48530.134*
H11B0.39960.85190.45990.134*
H11C0.52820.92550.45280.134*
C120.48295 (14)0.2255 (3)0.05575 (6)0.0410 (3)
C130.31325 (16)0.1234 (3)0.00211 (7)0.0558 (5)
H130.25840.14380.03370.067*
C140.29513 (18)0.0519 (4)0.03058 (9)0.0672 (5)
H140.22970.15130.02180.081*
C150.37720 (18)0.0752 (4)0.07679 (9)0.0645 (5)
H150.36620.19290.09970.077*
N10.58083 (12)0.3715 (2)0.06677 (5)0.0448 (3)
H10.58160.48700.04600.054*
N20.51240 (12)0.5382 (3)0.30859 (5)0.0473 (3)
H2A0.53360.44830.33530.057*
N30.44158 (12)0.7152 (3)0.31136 (5)0.0474 (3)
N40.40737 (12)0.2669 (2)0.00980 (5)0.0447 (3)
N50.47232 (14)0.0633 (3)0.09050 (6)0.0543 (4)
O10.77449 (10)0.5273 (3)0.10851 (5)0.0599 (3)
O20.74016 (12)0.1133 (2)0.11958 (5)0.0593 (3)
O30.49670 (15)0.4579 (3)0.40757 (6)0.0857 (5)
O40.26722 (17)0.9867 (4)0.38702 (7)0.1059 (6)
S10.69587 (3)0.34360 (8)0.116167 (15)0.04382 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (7)0.0417 (8)0.0330 (7)0.0005 (6)0.0023 (6)0.0020 (6)
C20.0458 (8)0.0380 (8)0.0418 (8)0.0078 (6)0.0060 (7)0.0003 (6)
C30.0475 (8)0.0447 (8)0.0393 (8)0.0065 (7)0.0064 (7)0.0082 (6)
C40.0375 (7)0.0457 (8)0.0361 (7)0.0001 (6)0.0037 (6)0.0044 (6)
C50.0471 (8)0.0370 (8)0.0473 (9)0.0071 (7)0.0076 (7)0.0012 (7)
C60.0494 (8)0.0409 (8)0.0381 (8)0.0041 (7)0.0043 (7)0.0051 (6)
C70.0483 (8)0.0587 (10)0.0456 (9)0.0016 (8)0.0098 (7)0.0085 (8)
C80.0610 (11)0.0676 (12)0.0638 (12)0.0124 (10)0.0139 (9)0.0124 (10)
C90.0716 (13)0.0735 (14)0.0858 (16)0.0217 (11)0.0114 (12)0.0035 (12)
C100.0551 (10)0.0769 (13)0.0471 (10)0.0054 (9)0.0167 (8)0.0013 (9)
C110.0990 (17)0.118 (2)0.0458 (11)0.0011 (16)0.0061 (11)0.0156 (12)
C120.0447 (8)0.0441 (8)0.0336 (7)0.0011 (7)0.0066 (6)0.0013 (6)
C130.0510 (9)0.0650 (11)0.0470 (9)0.0096 (9)0.0002 (7)0.0036 (8)
C140.0586 (11)0.0666 (12)0.0724 (13)0.0220 (10)0.0041 (9)0.0041 (10)
C150.0647 (11)0.0609 (11)0.0665 (12)0.0138 (10)0.0104 (10)0.0163 (10)
N10.0479 (7)0.0494 (8)0.0336 (6)0.0079 (6)0.0002 (5)0.0049 (6)
N20.0508 (7)0.0542 (8)0.0367 (7)0.0081 (6)0.0085 (6)0.0001 (6)
N30.0422 (7)0.0553 (8)0.0431 (7)0.0034 (6)0.0052 (6)0.0083 (6)
N40.0469 (7)0.0509 (8)0.0343 (6)0.0053 (6)0.0038 (5)0.0001 (6)
N50.0582 (8)0.0566 (9)0.0457 (8)0.0083 (7)0.0054 (6)0.0123 (7)
O10.0471 (6)0.0832 (9)0.0491 (7)0.0162 (6)0.0089 (5)0.0029 (6)
O20.0637 (7)0.0686 (8)0.0433 (6)0.0224 (7)0.0057 (5)0.0072 (6)
O30.1122 (12)0.0941 (11)0.0564 (8)0.0341 (10)0.0303 (8)0.0152 (8)
O40.1151 (12)0.1252 (15)0.0895 (12)0.0543 (12)0.0496 (10)0.0011 (11)
S10.04035 (19)0.0554 (2)0.03392 (18)0.00152 (17)0.00343 (15)0.00326 (16)
Geometric parameters (Å, º) top
C1—C21.380 (2)C10—C111.489 (3)
C1—C61.386 (2)C11—H11A0.9600
C1—S11.7590 (15)C11—H11B0.9600
C2—C31.381 (2)C11—H11C0.9600
C2—H20.9300C12—N51.325 (2)
C3—C41.386 (2)C12—N41.340 (2)
C3—H30.9300C12—N11.378 (2)
C4—C51.388 (2)C13—N41.339 (2)
C4—N21.397 (2)C13—C141.366 (3)
C5—C61.380 (2)C13—H130.9300
C5—H50.9300C14—C151.366 (3)
C6—H60.9300C14—H140.9300
C7—N31.306 (2)C15—N51.333 (2)
C7—C81.478 (3)C15—H150.9300
C7—C101.493 (3)N1—S11.6396 (13)
C8—O41.214 (2)N1—H10.8600
C8—C91.495 (3)N2—N31.3136 (19)
C9—H9A0.9600N2—H2A0.8600
C9—H9B0.9600O1—S11.4284 (13)
C9—H9C0.9600O2—S11.4210 (13)
C10—O31.206 (2)
C2—C1—C6120.88 (14)C10—C11—H11A109.5
C2—C1—S1119.82 (12)C10—C11—H11B109.5
C6—C1—S1119.27 (12)H11A—C11—H11B109.5
C1—C2—C3119.71 (15)C10—C11—H11C109.5
C1—C2—H2120.1H11A—C11—H11C109.5
C3—C2—H2120.1H11B—C11—H11C109.5
C2—C3—C4119.62 (15)N5—C12—N4127.00 (15)
C2—C3—H3120.2N5—C12—N1118.39 (14)
C4—C3—H3120.2N4—C12—N1114.61 (14)
C3—C4—C5120.56 (15)N4—C13—C14122.19 (17)
C3—C4—N2117.87 (14)N4—C13—H13118.9
C5—C4—N2121.56 (14)C14—C13—H13118.9
C6—C5—C4119.70 (15)C13—C14—C15117.17 (18)
C6—C5—H5120.2C13—C14—H14121.4
C4—C5—H5120.2C15—C14—H14121.4
C5—C6—C1119.51 (15)N5—C15—C14122.95 (18)
C5—C6—H6120.2N5—C15—H15118.5
C1—C6—H6120.2C14—C15—H15118.5
N3—C7—C8114.89 (17)C12—N1—S1125.49 (11)
N3—C7—C10123.56 (16)C12—N1—H1117.3
C8—C7—C10121.55 (16)S1—N1—H1117.3
O4—C8—C7119.93 (18)N3—N2—C4119.95 (14)
O4—C8—C9121.11 (18)N3—N2—H2A120.0
C7—C8—C9118.91 (18)C4—N2—H2A120.0
C8—C9—H9A109.5C7—N3—N2120.95 (15)
C8—C9—H9B109.5C13—N4—C12115.42 (15)
H9A—C9—H9B109.5C12—N5—C15115.25 (16)
C8—C9—H9C109.5O2—S1—O1118.93 (9)
H9A—C9—H9C109.5O2—S1—N1110.86 (6)
H9B—C9—H9C109.5O1—S1—N1103.75 (6)
O3—C10—C11121.73 (19)O2—S1—C1108.15 (6)
O3—C10—C7120.14 (16)O1—S1—C1109.07 (6)
C11—C10—C7117.9 (2)N1—S1—C1105.24 (7)
C6—C1—C2—C30.1 (2)N4—C12—N1—S1172.23 (12)
S1—C1—C2—C3177.95 (12)C3—C4—N2—N3168.07 (14)
C1—C2—C3—C41.0 (2)C5—C4—N2—N312.8 (2)
C2—C3—C4—C50.8 (2)C8—C7—N3—N2173.28 (15)
C2—C3—C4—N2179.93 (14)C10—C7—N3—N26.1 (3)
C3—C4—C5—C60.5 (2)C4—N2—N3—C7173.92 (15)
N2—C4—C5—C6178.57 (14)C14—C13—N4—C120.5 (3)
C4—C5—C6—C11.6 (2)N5—C12—N4—C131.8 (3)
C2—C1—C6—C51.4 (2)N1—C12—N4—C13178.52 (15)
S1—C1—C6—C5179.29 (12)N4—C12—N5—C151.9 (3)
N3—C7—C8—O4164.74 (17)N1—C12—N5—C15178.47 (16)
C10—C7—C8—O414.6 (3)C14—C15—N5—C120.6 (3)
N3—C7—C8—C912.8 (3)C12—N1—S1—O248.04 (14)
C10—C7—C8—C9167.8 (2)C12—N1—S1—O1176.80 (12)
N3—C7—C10—O327.4 (3)C12—N1—S1—C168.66 (15)
C8—C7—C10—O3151.92 (17)C2—C1—S1—O24.63 (13)
N3—C7—C10—C11146.9 (2)C6—C1—S1—O2177.48 (11)
C8—C7—C10—C1133.8 (3)C2—C1—S1—O1126.05 (12)
N4—C13—C14—C150.5 (3)C6—C1—S1—O151.84 (13)
C13—C14—C15—N50.4 (3)C2—C1—S1—N1123.16 (13)
N5—C12—N1—S18.0 (2)C6—C1—S1—N158.95 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.012.654 (2)131
C15—H15···O4i0.932.463.262 (3)144
Symmetry code: (i) x+1/2, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15N5O4S
Mr361.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.354 (3), 5.7875 (13), 25.974 (6)
β (°) 101.877 (4)
V3)1670.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
17935, 3999, 3164
Rint0.027
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.07
No. of reflections3999
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.012.654 (2)131
C15—H15···O4i0.932.463.262 (3)144
Symmetry code: (i) x+1/2, y3/2, z+1/2.
 

Acknowledgements

KKU and SU are grateful to the UGC, New Delhi, for financial support.

References

First citationAbbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 217–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBadr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143–1149.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGale, G. A., Kirtikara, K., Pittayakhajonwut, P., Sivichai, S., Thebtaranonth, Y., Thongpanchang, C. & Vichai, V. (2007). Pharmacol. Ther. 115, 307–351.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoyal, R. N. & Bhargava, S. (1989). Curr. Sci. (India), 58, 287–290.  Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol. 48, 47–50.  CrossRef CAS Google Scholar
First citationNovinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem. 19, 517–520.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds