metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium N-chloro-2-methyl­benzene­sulfonamidate sesquihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 14 May 2009; accepted 26 May 2009; online 29 May 2009)

In the title salt, Na+·C7H7ClNO2S·1.5H2O, one of the water mol­ecules lies on a twofold axis. The sodium ion shows an O6 octa­hedral coordination defined by three water O atoms and three sulfonyl O atoms derived from three different anions. The S—N distance of 1.5898 (19) Å is consistent with an S=N double bond. The crystal structure is stabilized by N—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For background to N-halo-aryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572-582.]). For related structures, see: Gowda et al. (2007a[Gowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, m1644-m1645.],b[Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007b). Z. Naturforsch. Teil A, 62, 417-424.],c[Gowda, B. T., Usha, K. M., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, m1739-m1740.]); George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C7H7ClNO2S·1.5H2O

  • Mr = 509.32

  • Monoclinic, C 2

  • a = 11.011 (1) Å

  • b = 6.6434 (6) Å

  • c = 14.447 (1) Å

  • β = 100.350 (7)°

  • V = 1039.61 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 299 K

  • 0.45 × 0.32 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.776, Tmax = 0.954

  • 3268 measured reflections

  • 1657 independent reflections

  • 1613 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.02

  • 1657 reflections

  • 142 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 617 Friedel pairs

  • Flack parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯Cl1i 0.83 (3) 2.62 (3) 3.4266 (19) 167 (3)
O3—H32⋯N1ii 0.77 (3) 2.19 (3) 2.951 (3) 168 (3)
O4—H41⋯N1iii 0.80 (3) 2.19 (3) 2.989 (2) 176 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) -x+1, y, -z+1; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of N-halo-arylsulfonamides is of interest due to their diverse characteristics (Gowda et al., 2005). In the present work, the structure of sodium N-chloro-2-methyl- benzenesulfonamidate (I) has been determined to explore substituent effects on the solid-state structures of N-halo arylsulfonamidates (Gowda et al., 2007a, b, c). The structure of (I), Fig. 1, resembles the sodium salts of N-chloro-4-chloro-benzenesulfonamidate (Gowda et al., 2007a), N-chloro-2-methyl-4-chloro-benzenesulfonamidate (Gowda et al., 2007b), N-bromo-benzenesulfonamidate (Gowda et al., 2007c), and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986). The sodium ion shows octahedral coordination defined by three water-O atoms and by three sulfonyl-O atoms derived from three different anions. There is no interaction between the nitrogen and sodium ions in (I). The N1—S1 distance of 1.5898 (19) Å is consistent with a S—N double bond and is in agreement with those observed with related N-chloro arylsulfonamides. In this description, the negative charge on the anion is distributed over the oxygen atoms. With the association described above for the Na+ ion along with N-H···O and O-H···Cl hydrogen bonding, Table 1, the molecular packing comprises layers stacked along the c axis (Fig. 2).

Related literature top

For background to N-halo-arylsulfonamides, see: Gowda et al. (2005). For related structures, see: Gowda et al. (2007a,b,c); George et al. (2000); Olmstead & Power (1986).

Experimental top

The purity of the commmercial sample (TCI Chemicals, Tokyo Kasei) was checked and characterized by recording its infrared and NMR spectra and estimating the amount of active chlorine present in it by the iodometric method (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in a water solution of (I) by slow evaporation at room temperature.

Refinement top

The O-bound H atoms were located in difference map and their positional parameters were refined freely [O—H = 0.77 (3)– 0.83 (3) Å]. The other H atoms were positioned in their idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), extended to show the immediate coordination geometry of the sodium cation. Only atoms comprising the asymmetric unit are labelled. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) as viewed down the b axis, showing the O3W—H31···Cl1, O3W—H32···N1 and O4W—H41···N1 hydrogen bonds as dashed lines.
Sodium N-chloro-2-methylbenzenesulfonamidate sesquihydrate top
Crystal data top
Na+·C7H7ClNO2S·1.5H2OF(000) = 524
Mr = 509.32Dx = 1.627 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3049 reflections
a = 11.011 (1) Åθ = 2.6–27.5°
b = 6.6434 (6) ŵ = 0.60 mm1
c = 14.447 (1) ÅT = 299 K
β = 100.350 (7)°Plate, colourless
V = 1039.61 (15) Å30.45 × 0.32 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1657 independent reflections
Radiation source: fine-focus sealed tube1613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and ϕ scansθmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1312
Tmin = 0.776, Tmax = 0.954k = 78
3268 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.041P)2 + 0.5427P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.017
1657 reflectionsΔρmax = 0.25 e Å3
142 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 617 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
Na+·C7H7ClNO2S·1.5H2OV = 1039.61 (15) Å3
Mr = 509.32Z = 2
Monoclinic, C2Mo Kα radiation
a = 11.011 (1) ŵ = 0.60 mm1
b = 6.6434 (6) ÅT = 299 K
c = 14.447 (1) Å0.45 × 0.32 × 0.08 mm
β = 100.350 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1657 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1613 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.954Rint = 0.018
3268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.16 e Å3
1657 reflectionsAbsolute structure: Flack (1983), 617 Friedel pairs
142 parametersAbsolute structure parameter: 0.02 (6)
1 restraint
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38269 (5)0.04628 (9)0.25363 (4)0.03904 (16)
S10.36260 (4)0.41295 (8)0.33507 (3)0.02316 (13)
Na10.14461 (8)0.19582 (15)0.47389 (6)0.0333 (2)
O10.24978 (13)0.3583 (3)0.36677 (10)0.0367 (4)
O20.43766 (13)0.5621 (3)0.39333 (10)0.0320 (4)
O30.29326 (15)0.3727 (3)0.59025 (12)0.0365 (4)
H310.258 (3)0.402 (5)0.6345 (18)0.044*
H320.354 (3)0.324 (5)0.615 (2)0.044*
O40.00000.4675 (4)0.50000.0358 (6)
H410.015 (3)0.534 (5)0.4534 (18)0.043*
N10.45553 (16)0.2319 (3)0.32989 (12)0.0286 (4)
C10.31412 (18)0.5172 (3)0.22046 (13)0.0254 (4)
C20.3987 (2)0.5799 (4)0.16471 (15)0.0310 (5)
C30.3489 (3)0.6595 (4)0.07650 (16)0.0442 (6)
H30.40260.70450.03800.053*
C40.2246 (3)0.6740 (5)0.04438 (17)0.0533 (7)
H40.19540.72550.01530.064*
C50.1428 (3)0.6125 (5)0.10021 (19)0.0503 (7)
H50.05820.62330.07880.060*
C60.1876 (2)0.5343 (4)0.18857 (16)0.0367 (5)
H60.13280.49300.22680.044*
C70.5365 (2)0.5657 (5)0.19499 (17)0.0410 (6)
H7A0.56000.42700.20400.049*
H7B0.56100.63780.25290.049*
H7C0.57630.62330.14730.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0411 (3)0.0278 (3)0.0496 (3)0.0037 (2)0.0118 (2)0.0106 (3)
S10.0232 (2)0.0237 (3)0.0231 (2)0.0006 (2)0.00549 (16)0.0007 (2)
Na10.0316 (5)0.0327 (5)0.0374 (4)0.0053 (4)0.0114 (4)0.0002 (4)
O10.0316 (8)0.0456 (12)0.0360 (8)0.0025 (7)0.0143 (6)0.0047 (7)
O20.0343 (8)0.0302 (10)0.0305 (7)0.0028 (7)0.0034 (6)0.0084 (6)
O30.0270 (8)0.0421 (12)0.0396 (8)0.0008 (7)0.0040 (6)0.0010 (7)
O40.0457 (14)0.0257 (14)0.0342 (11)0.0000.0025 (10)0.000
N10.0262 (9)0.0240 (11)0.0342 (9)0.0005 (7)0.0016 (7)0.0019 (7)
C10.0296 (10)0.0206 (12)0.0250 (9)0.0003 (9)0.0024 (7)0.0009 (8)
C20.0383 (12)0.0250 (14)0.0306 (10)0.0045 (9)0.0091 (8)0.0017 (9)
C30.0646 (17)0.0364 (17)0.0332 (11)0.0040 (13)0.0132 (11)0.0056 (11)
C40.076 (2)0.0450 (18)0.0334 (12)0.0053 (15)0.0048 (13)0.0079 (12)
C50.0449 (15)0.0508 (18)0.0478 (14)0.0069 (12)0.0115 (11)0.0001 (12)
C60.0319 (11)0.0337 (14)0.0432 (11)0.0019 (10)0.0033 (9)0.0007 (11)
C70.0357 (12)0.0449 (17)0.0457 (12)0.0071 (11)0.0163 (10)0.0029 (12)
Geometric parameters (Å, º) top
Cl1—N11.7491 (19)O3—H310.83 (3)
S1—O11.4454 (15)O3—H320.77 (3)
S1—O21.4571 (16)O4—Na1iv2.480 (2)
S1—N11.5898 (19)O4—H410.80 (3)
S1—C11.785 (2)C1—C61.391 (3)
S1—Na1i3.3517 (10)C1—C21.399 (3)
Na1—O12.3549 (17)C2—C31.397 (3)
Na1—O32.4283 (18)C2—C71.505 (3)
Na1—O2ii2.4319 (16)C3—C41.367 (4)
Na1—O42.480 (2)C3—H30.9300
Na1—O3ii2.483 (2)C4—C51.375 (4)
Na1—O2iii2.5266 (16)C4—H40.9300
Na1—S1ii3.3517 (10)C5—C61.384 (4)
Na1—Na1iv3.4021 (16)C5—H50.9300
Na1—Na1i4.0447 (10)C6—H60.9300
Na1—Na1ii4.0447 (10)C7—H7A0.9600
O2—Na1i2.4319 (16)C7—H7B0.9600
O2—Na1v2.5266 (16)C7—H7C0.9600
O3—Na1i2.483 (2)
O1—S1—O2114.72 (9)O3—Na1—Na1ii88.59 (6)
O1—S1—N1114.96 (10)O2ii—Na1—Na1ii80.53 (5)
O2—S1—N1103.80 (9)O4—Na1—Na1ii158.72 (5)
O1—S1—C1105.10 (9)O3ii—Na1—Na1ii34.12 (4)
O2—S1—C1108.43 (10)O2iii—Na1—Na1ii103.70 (5)
N1—S1—C1109.72 (9)S1ii—Na1—Na1ii58.91 (2)
O1—S1—Na1i74.39 (7)Na1iv—Na1—Na1ii119.16 (2)
N1—S1—Na1i125.01 (7)Na1i—Na1—Na1ii110.42 (4)
C1—S1—Na1i119.92 (8)S1—O1—Na1151.10 (10)
O1—Na1—O383.29 (6)S1—O2—Na1i116.81 (8)
O1—Na1—O2ii169.34 (7)S1—O2—Na1v151.20 (10)
O3—Na1—O2ii86.05 (6)Na1i—O2—Na1v86.63 (5)
O1—Na1—O499.86 (6)Na1—O3—Na1i110.90 (7)
O3—Na1—O485.06 (6)Na1—O3—H31107 (2)
O2ii—Na1—O478.79 (5)Na1i—O3—H31107 (2)
O1—Na1—O3ii87.14 (7)Na1—O3—H32123 (2)
O3—Na1—O3ii118.69 (5)Na1i—O3—H32105 (2)
O2ii—Na1—O3ii98.34 (7)H31—O3—H32103 (3)
O4—Na1—O3ii156.00 (6)Na1iv—O4—Na186.61 (9)
O1—Na1—O2iii111.58 (6)Na1iv—O4—H41119 (2)
O3—Na1—O2iii158.28 (7)Na1—O4—H41108 (2)
O2ii—Na1—O2iii78.57 (6)S1—N1—Cl1109.69 (10)
O4—Na1—O2iii77.02 (5)C6—C1—C2121.0 (2)
O3ii—Na1—O2iii79.06 (6)C6—C1—S1116.98 (16)
O1—Na1—S1ii152.30 (5)C2—C1—S1122.02 (15)
O3—Na1—S1ii79.28 (5)C3—C2—C1116.5 (2)
O2ii—Na1—S1ii22.83 (4)C3—C2—C7119.9 (2)
O4—Na1—S1ii99.90 (4)C1—C2—C7123.7 (2)
O3ii—Na1—S1ii82.61 (5)C4—C3—C2122.7 (2)
O2iii—Na1—S1ii91.68 (5)C4—C3—H3118.6
O1—Na1—Na1iv137.40 (5)C2—C3—H3118.6
O3—Na1—Na1iv112.82 (5)C3—C4—C5120.1 (2)
O2ii—Na1—Na1iv47.85 (4)C3—C4—H4119.9
O4—Na1—Na1iv46.69 (4)C5—C4—H4119.9
O3ii—Na1—Na1iv114.48 (5)C4—C5—C6119.3 (2)
O2iii—Na1—Na1iv45.53 (4)C4—C5—H5120.3
S1ii—Na1—Na1iv69.87 (2)C6—C5—H5120.3
O1—Na1—Na1i54.03 (5)C5—C6—C1120.4 (2)
O3—Na1—Na1i34.99 (5)C5—C6—H6119.8
O2ii—Na1—Na1i115.82 (6)C1—C6—H6119.8
O4—Na1—Na1i74.73 (4)C2—C7—H7A109.5
O3ii—Na1—Na1i126.33 (6)C2—C7—H7B109.5
O2iii—Na1—Na1i144.54 (5)H7A—C7—H7B109.5
S1ii—Na1—Na1i113.86 (3)C2—C7—H7C109.5
Na1iv—Na1—Na1i119.16 (2)H7A—C7—H7C109.5
O1—Na1—Na1ii99.54 (6)H7B—C7—H7C109.5
O2—S1—O1—Na171.5 (3)O2ii—Na1—O4—Na1iv41.12 (4)
N1—S1—O1—Na148.8 (2)O3ii—Na1—O4—Na1iv44.21 (14)
C1—S1—O1—Na1169.5 (2)O2iii—Na1—O4—Na1iv39.58 (4)
Na1i—S1—O1—Na173.0 (2)S1ii—Na1—O4—Na1iv49.86 (2)
O3—Na1—O1—S149.7 (2)Na1i—Na1—O4—Na1iv162.08 (4)
O2ii—Na1—O1—S151.7 (5)Na1ii—Na1—O4—Na1iv54.89 (12)
O4—Na1—O1—S1133.4 (2)O1—S1—N1—Cl158.78 (12)
O3ii—Na1—O1—S169.7 (2)O2—S1—N1—Cl1175.11 (9)
O2iii—Na1—O1—S1146.7 (2)C1—S1—N1—Cl159.39 (13)
S1ii—Na1—O1—S11.5 (3)Na1i—S1—N1—Cl1146.70 (6)
Na1iv—Na1—O1—S1166.35 (18)O1—S1—C1—C63.1 (2)
Na1i—Na1—O1—S170.6 (2)O2—S1—C1—C6119.99 (19)
Na1ii—Na1—O1—S137.8 (2)N1—S1—C1—C6127.3 (2)
O1—S1—O2—Na1i2.28 (14)Na1i—S1—C1—C677.3 (2)
N1—S1—O2—Na1i128.55 (10)O1—S1—C1—C2177.07 (18)
C1—S1—O2—Na1i114.82 (10)O2—S1—C1—C259.8 (2)
O1—S1—O2—Na1v139.18 (19)N1—S1—C1—C252.9 (2)
N1—S1—O2—Na1v12.9 (2)Na1i—S1—C1—C2102.50 (18)
C1—S1—O2—Na1v103.7 (2)C6—C1—C2—C30.0 (3)
Na1i—S1—O2—Na1v141.5 (3)S1—C1—C2—C3179.79 (19)
O1—Na1—O3—Na1i30.30 (8)C6—C1—C2—C7179.9 (2)
O2ii—Na1—O3—Na1i149.33 (8)S1—C1—C2—C70.2 (3)
O4—Na1—O3—Na1i70.26 (7)C1—C2—C3—C40.9 (4)
O3ii—Na1—O3—Na1i113.32 (11)C7—C2—C3—C4179.1 (3)
O2iii—Na1—O3—Na1i104.58 (18)C2—C3—C4—C51.3 (5)
S1ii—Na1—O3—Na1i171.33 (7)C3—C4—C5—C60.6 (5)
Na1iv—Na1—O3—Na1i108.70 (6)C4—C5—C6—C10.3 (5)
Na1ii—Na1—O3—Na1i130.07 (7)C2—C1—C6—C50.6 (4)
O1—Na1—O4—Na1iv149.64 (6)S1—C1—C6—C5179.6 (2)
O3—Na1—O4—Na1iv128.06 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl1i0.83 (3)2.62 (3)3.4266 (19)167 (3)
O3—H32···N1vi0.77 (3)2.19 (3)2.951 (3)168 (3)
O4—H41···N1vii0.80 (3)2.19 (3)2.989 (2)176 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaNa+·C7H7ClNO2S·1.5H2O
Mr509.32
Crystal system, space groupMonoclinic, C2
Temperature (K)299
a, b, c (Å)11.011 (1), 6.6434 (6), 14.447 (1)
β (°) 100.350 (7)
V3)1039.61 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.45 × 0.32 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.776, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
3268, 1657, 1613
Rint0.018
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.02
No. of reflections1657
No. of parameters142
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16
Absolute structureFlack (1983), 617 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl1i0.83 (3)2.62 (3)3.4266 (19)167 (3)
O3—H32···N1ii0.77 (3)2.19 (3)2.951 (3)168 (3)
O4—H41···N1iii0.80 (3)2.19 (3)2.989 (2)176 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572–582.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, m1644-m1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007b). Z. Naturforsch. Teil A, 62, 417–424.  CAS Google Scholar
First citationGowda, B. T., Usha, K. M., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, m1739–m1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds