organic compounds
2-Chloro-N-(2,4-dichlorophenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com
The structure of the title compound, C8H6Cl3NO, contains two molecules in the In each independent molecule, the conformation of the N—H bond is almost syn to the ortho-chloro substituent and the conformation of the C=O bond is anti to the N—H bond. The molecules in the are linked into supramolecular chains through N—H⋯O hydrogen bonding along the a axis.
Related literature
For the preparation of the title compound, see: Shilpa & Gowda (2007); Pies et al. (1971). For related structures, see: Gowda, Foro & Fuess (2008); Gowda, Kožíšek et al. (2008); Gowda et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809018753/tk2452sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018753/tk2452Isup2.hkl
Compound (I) was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR and NQR spectra (Shilpa & Gowda, 2007; Pies et al., 1971). Single crystals of were grown by the slow evaporation of an ethanol solution of (I) held at room temperature.
The N-bound H atoms were located in difference map and their positional parameters were refined freely [N—H = 0.77 (7)–0.91 (7) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
To improve considerably the values of R1, wR2, and the GoF, eight reflections (-1 8 3, 0 10 4, 1 5 3, 2 5 0, 2 5 1, 2 5 3, 4 5 0, 1 1 28) were omitted from the final refinement.
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H6Cl3NO | F(000) = 960 |
Mr = 238.49 | Dx = 1.620 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1466 reflections |
a = 4.7457 (5) Å | θ = 2.5–27.8° |
b = 12.9266 (9) Å | µ = 0.89 mm−1 |
c = 31.879 (4) Å | T = 299 K |
β = 90.12 (1)° | Needle, colourless |
V = 1955.6 (3) Å3 | 0.48 × 0.05 × 0.05 mm |
Z = 8 |
Oxford Diffraction Xcalibur single-crystal diffractometer with a Sapphire CCD detector | 3590 independent reflections |
Radiation source: fine-focus sealed tube | 1475 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
Rotation method data acquisition using ω and ϕ scans | θmax = 25.3°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −5→4 |
Tmin = 0.674, Tmax = 0.957 | k = −15→11 |
7393 measured reflections | l = −38→38 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.080 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.196 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0867P)2] where P = (Fo2 + 2Fc2)/3 |
3590 reflections | (Δ/σ)max = 0.005 |
241 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C8H6Cl3NO | V = 1955.6 (3) Å3 |
Mr = 238.49 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.7457 (5) Å | µ = 0.89 mm−1 |
b = 12.9266 (9) Å | T = 299 K |
c = 31.879 (4) Å | 0.48 × 0.05 × 0.05 mm |
β = 90.12 (1)° |
Oxford Diffraction Xcalibur single-crystal diffractometer with a Sapphire CCD detector | 3590 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1475 reflections with I > 2σ(I) |
Tmin = 0.674, Tmax = 0.957 | Rint = 0.077 |
7393 measured reflections |
R[F2 > 2σ(F2)] = 0.080 | 0 restraints |
wR(F2) = 0.196 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.91 | Δρmax = 0.44 e Å−3 |
3590 reflections | Δρmin = −0.39 e Å−3 |
241 parameters |
Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.5403 (4) | 0.71319 (16) | 0.00042 (6) | 0.0507 (6) | |
Cl2 | −0.1002 (5) | 0.42476 (17) | 0.07378 (7) | 0.0699 (8) | |
Cl3 | 0.0189 (5) | 1.14606 (18) | 0.06668 (10) | 0.0935 (9) | |
O1 | −0.1586 (10) | 0.9317 (4) | 0.06073 (19) | 0.0672 (18) | |
N1 | 0.2740 (11) | 0.8593 (5) | 0.06055 (18) | 0.0362 (16) | |
H1N | 0.460 (14) | 0.876 (5) | 0.0583 (19) | 0.043* | |
C1 | 0.1840 (14) | 0.7560 (5) | 0.0644 (2) | 0.0309 (17) | |
C2 | 0.2935 (13) | 0.6804 (6) | 0.0379 (2) | 0.0330 (18) | |
C3 | 0.2098 (15) | 0.5774 (6) | 0.0412 (2) | 0.0393 (19) | |
H3 | 0.2862 | 0.5270 | 0.0238 | 0.047* | |
C4 | 0.0105 (16) | 0.5522 (6) | 0.0710 (2) | 0.047 (2) | |
C5 | −0.0950 (15) | 0.6242 (7) | 0.0982 (2) | 0.046 (2) | |
H5 | −0.2243 | 0.6049 | 0.1186 | 0.055* | |
C6 | −0.0095 (15) | 0.7241 (6) | 0.0950 (2) | 0.044 (2) | |
H6 | −0.0810 | 0.7727 | 0.1137 | 0.053* | |
C7 | 0.0950 (14) | 0.9405 (6) | 0.0596 (2) | 0.0386 (19) | |
C8 | 0.2440 (16) | 1.0429 (6) | 0.0563 (3) | 0.063 (3) | |
H8A | 0.3208 | 1.0505 | 0.0283 | 0.075* | |
H8B | 0.3997 | 1.0444 | 0.0761 | 0.075* | |
Cl4 | 1.0368 (4) | 0.28731 (17) | 0.25087 (6) | 0.0545 (6) | |
Cl5 | 0.4118 (6) | 0.60945 (19) | 0.20155 (8) | 0.0830 (8) | |
Cl6 | 0.4903 (4) | −0.11251 (17) | 0.16628 (7) | 0.0586 (6) | |
O2 | 0.3241 (10) | 0.1017 (4) | 0.1770 (2) | 0.0701 (18) | |
N2 | 0.7526 (12) | 0.1738 (5) | 0.1816 (2) | 0.0422 (18) | |
H2N | 0.912 (15) | 0.163 (6) | 0.181 (2) | 0.051* | |
C9 | 0.6701 (14) | 0.2773 (6) | 0.1861 (2) | 0.0335 (17) | |
C10 | 0.7879 (14) | 0.3385 (6) | 0.2170 (2) | 0.0381 (19) | |
C11 | 0.7131 (15) | 0.4406 (6) | 0.2217 (2) | 0.045 (2) | |
H11 | 0.7958 | 0.4811 | 0.2425 | 0.054* | |
C12 | 0.5141 (17) | 0.4817 (6) | 0.1952 (3) | 0.049 (2) | |
C13 | 0.3952 (15) | 0.4215 (7) | 0.1645 (3) | 0.049 (2) | |
H13 | 0.2595 | 0.4499 | 0.1469 | 0.059* | |
C14 | 0.4723 (15) | 0.3210 (6) | 0.1595 (2) | 0.044 (2) | |
H14 | 0.3922 | 0.2817 | 0.1381 | 0.052* | |
C15 | 0.5757 (15) | 0.0933 (6) | 0.1774 (2) | 0.0374 (19) | |
C16 | 0.7204 (15) | −0.0104 (6) | 0.1735 (3) | 0.062 (3) | |
H16A | 0.8307 | −0.0229 | 0.1986 | 0.074* | |
H16B | 0.8496 | −0.0079 | 0.1500 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0426 (12) | 0.0541 (13) | 0.0555 (13) | −0.0074 (10) | 0.0135 (9) | −0.0047 (11) |
Cl2 | 0.0955 (19) | 0.0486 (15) | 0.0657 (16) | −0.0266 (12) | −0.0015 (13) | 0.0074 (12) |
Cl3 | 0.0723 (18) | 0.0432 (15) | 0.165 (3) | 0.0070 (13) | 0.0398 (16) | 0.0038 (16) |
O1 | 0.018 (3) | 0.043 (4) | 0.140 (6) | 0.002 (3) | 0.005 (3) | −0.001 (3) |
N1 | 0.016 (3) | 0.034 (4) | 0.058 (4) | −0.007 (3) | 0.001 (3) | 0.000 (3) |
C1 | 0.029 (4) | 0.030 (4) | 0.034 (4) | 0.006 (3) | −0.006 (3) | −0.002 (4) |
C2 | 0.029 (4) | 0.045 (5) | 0.025 (4) | 0.000 (3) | 0.003 (3) | 0.006 (4) |
C3 | 0.040 (5) | 0.028 (5) | 0.050 (5) | 0.002 (4) | 0.003 (4) | −0.004 (4) |
C4 | 0.049 (5) | 0.051 (6) | 0.040 (5) | −0.012 (4) | −0.012 (4) | 0.004 (4) |
C5 | 0.037 (5) | 0.055 (6) | 0.046 (5) | −0.015 (4) | 0.013 (4) | 0.002 (5) |
C6 | 0.047 (5) | 0.050 (6) | 0.036 (5) | 0.004 (4) | 0.012 (4) | −0.007 (4) |
C7 | 0.021 (4) | 0.035 (5) | 0.060 (5) | 0.003 (4) | −0.001 (4) | −0.008 (4) |
C8 | 0.033 (5) | 0.043 (5) | 0.113 (8) | −0.002 (4) | 0.007 (4) | 0.001 (5) |
Cl4 | 0.0407 (12) | 0.0626 (15) | 0.0602 (13) | 0.0013 (10) | −0.0087 (9) | −0.0003 (12) |
Cl5 | 0.106 (2) | 0.0461 (15) | 0.097 (2) | 0.0256 (14) | −0.0060 (15) | −0.0084 (14) |
Cl6 | 0.0516 (13) | 0.0489 (13) | 0.0753 (16) | −0.0065 (11) | −0.0020 (11) | −0.0133 (12) |
O2 | 0.020 (3) | 0.047 (4) | 0.143 (6) | 0.010 (3) | −0.003 (3) | −0.013 (4) |
N2 | 0.020 (3) | 0.042 (4) | 0.064 (4) | 0.002 (3) | 0.000 (3) | −0.003 (3) |
C9 | 0.028 (4) | 0.036 (5) | 0.037 (4) | 0.000 (3) | 0.008 (3) | 0.001 (4) |
C10 | 0.031 (4) | 0.043 (5) | 0.041 (5) | −0.001 (4) | −0.001 (3) | 0.001 (4) |
C11 | 0.045 (5) | 0.043 (5) | 0.047 (5) | −0.003 (4) | 0.000 (4) | −0.008 (4) |
C12 | 0.054 (6) | 0.044 (5) | 0.051 (5) | 0.012 (4) | 0.011 (4) | 0.001 (5) |
C13 | 0.043 (5) | 0.054 (6) | 0.049 (5) | 0.007 (4) | −0.007 (4) | 0.006 (5) |
C14 | 0.043 (5) | 0.041 (5) | 0.046 (5) | 0.005 (4) | −0.004 (4) | 0.004 (4) |
C15 | 0.022 (4) | 0.045 (5) | 0.045 (5) | 0.002 (4) | 0.001 (3) | −0.005 (4) |
C16 | 0.035 (5) | 0.040 (5) | 0.110 (8) | −0.004 (4) | −0.001 (5) | −0.003 (5) |
Cl1—C2 | 1.728 (7) | Cl4—C10 | 1.730 (7) |
Cl2—C4 | 1.731 (8) | Cl5—C12 | 1.733 (8) |
Cl3—C8 | 1.740 (8) | Cl6—C16 | 1.728 (8) |
O1—C7 | 1.209 (7) | O2—C15 | 1.199 (7) |
N1—C7 | 1.350 (9) | N2—C15 | 1.344 (9) |
N1—C1 | 1.407 (9) | N2—C9 | 1.401 (9) |
N1—H1N | 0.91 (7) | N2—H2N | 0.77 (7) |
C1—C2 | 1.392 (9) | C9—C10 | 1.381 (9) |
C1—C6 | 1.403 (9) | C9—C14 | 1.385 (9) |
C2—C3 | 1.393 (10) | C10—C11 | 1.376 (10) |
C3—C4 | 1.381 (10) | C11—C12 | 1.373 (10) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.367 (11) | C12—C13 | 1.371 (10) |
C5—C6 | 1.358 (10) | C13—C14 | 1.360 (11) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.505 (11) | C15—C16 | 1.511 (10) |
C8—H8A | 0.9700 | C16—H16A | 0.9700 |
C8—H8B | 0.9700 | C16—H16B | 0.9700 |
C7—N1—C1 | 123.3 (6) | C15—N2—C9 | 125.1 (6) |
C7—N1—H1N | 115 (4) | C15—N2—H2N | 118 (6) |
C1—N1—H1N | 122 (4) | C9—N2—H2N | 117 (6) |
C2—C1—C6 | 117.4 (7) | C10—C9—C14 | 118.4 (7) |
C2—C1—N1 | 119.9 (6) | C10—C9—N2 | 120.5 (6) |
C6—C1—N1 | 122.6 (6) | C14—C9—N2 | 121.1 (6) |
C1—C2—C3 | 121.2 (6) | C11—C10—C9 | 121.6 (7) |
C1—C2—Cl1 | 120.1 (6) | C11—C10—Cl4 | 118.3 (6) |
C3—C2—Cl1 | 118.7 (6) | C9—C10—Cl4 | 120.1 (6) |
C4—C3—C2 | 118.2 (7) | C12—C11—C10 | 118.8 (7) |
C4—C3—H3 | 120.9 | C12—C11—H11 | 120.6 |
C2—C3—H3 | 120.9 | C10—C11—H11 | 120.6 |
C5—C4—C3 | 121.8 (7) | C13—C12—C11 | 120.1 (7) |
C5—C4—Cl2 | 120.3 (7) | C13—C12—Cl5 | 120.6 (6) |
C3—C4—Cl2 | 117.9 (7) | C11—C12—Cl5 | 119.3 (7) |
C6—C5—C4 | 119.4 (7) | C14—C13—C12 | 121.1 (7) |
C6—C5—H5 | 120.3 | C14—C13—H13 | 119.4 |
C4—C5—H5 | 120.3 | C12—C13—H13 | 119.4 |
C5—C6—C1 | 121.8 (7) | C13—C14—C9 | 120.0 (7) |
C5—C6—H6 | 119.1 | C13—C14—H14 | 120.0 |
C1—C6—H6 | 119.1 | C9—C14—H14 | 120.0 |
O1—C7—N1 | 123.5 (7) | O2—C15—N2 | 123.6 (7) |
O1—C7—C8 | 123.5 (7) | O2—C15—C16 | 122.1 (7) |
N1—C7—C8 | 112.9 (6) | N2—C15—C16 | 114.3 (6) |
C7—C8—Cl3 | 111.9 (5) | C15—C16—Cl6 | 113.6 (5) |
C7—C8—H8A | 109.2 | C15—C16—H16A | 108.8 |
Cl3—C8—H8A | 109.2 | Cl6—C16—H16A | 108.8 |
C7—C8—H8B | 109.2 | C15—C16—H16B | 108.8 |
Cl3—C8—H8B | 109.2 | Cl6—C16—H16B | 108.8 |
H8A—C8—H8B | 107.9 | H16A—C16—H16B | 107.7 |
C7—N1—C1—C2 | 132.9 (7) | C15—N2—C9—C10 | 132.3 (8) |
C7—N1—C1—C6 | −48.9 (10) | C15—N2—C9—C14 | −48.6 (10) |
C6—C1—C2—C3 | 1.3 (9) | C14—C9—C10—C11 | 0.0 (10) |
N1—C1—C2—C3 | 179.6 (6) | N2—C9—C10—C11 | 179.2 (7) |
C6—C1—C2—Cl1 | −178.2 (5) | C14—C9—C10—Cl4 | −179.8 (5) |
N1—C1—C2—Cl1 | 0.1 (8) | N2—C9—C10—Cl4 | −0.7 (9) |
C1—C2—C3—C4 | 1.2 (10) | C9—C10—C11—C12 | 0.7 (11) |
Cl1—C2—C3—C4 | −179.4 (5) | Cl4—C10—C11—C12 | −179.5 (6) |
C2—C3—C4—C5 | −3.0 (11) | C10—C11—C12—C13 | −0.5 (12) |
C2—C3—C4—Cl2 | 178.1 (5) | C10—C11—C12—Cl5 | 178.6 (6) |
C3—C4—C5—C6 | 2.3 (11) | C11—C12—C13—C14 | −0.5 (12) |
Cl2—C4—C5—C6 | −178.9 (6) | Cl5—C12—C13—C14 | −179.5 (6) |
C4—C5—C6—C1 | 0.4 (11) | C12—C13—C14—C9 | 1.3 (12) |
C2—C1—C6—C5 | −2.1 (10) | C10—C9—C14—C13 | −1.0 (11) |
N1—C1—C6—C5 | 179.7 (7) | N2—C9—C14—C13 | 179.9 (7) |
C1—N1—C7—O1 | −2.1 (12) | C9—N2—C15—O2 | 0.2 (12) |
C1—N1—C7—C8 | 178.6 (6) | C9—N2—C15—C16 | −179.5 (7) |
O1—C7—C8—Cl3 | 14.0 (11) | O2—C15—C16—Cl6 | 2.5 (11) |
N1—C7—C8—Cl3 | −166.8 (5) | N2—C15—C16—Cl6 | −177.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.91 (7) | 1.95 (7) | 2.851 (7) | 170 (6) |
N2—H2N···O2i | 0.77 (7) | 2.11 (7) | 2.872 (7) | 168 (8) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H6Cl3NO |
Mr | 238.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 4.7457 (5), 12.9266 (9), 31.879 (4) |
β (°) | 90.12 (1) |
V (Å3) | 1955.6 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.48 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur single-crystal diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.674, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7393, 3590, 1475 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.080, 0.196, 0.91 |
No. of reflections | 3590 |
No. of parameters | 241 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.39 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.91 (7) | 1.95 (7) | 2.851 (7) | 170 (6) |
N2—H2N···O2i | 0.77 (7) | 2.11 (7) | 2.872 (7) | 168 (8) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extension of his research fellowship.
References
Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o419. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany. Google Scholar
Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany. Google Scholar
Pies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson. 3, 147–176. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a study into the effect of ring- and side-chain substitutions on the solid-state structures of aromatic amides (Gowda, Foro & Fuess, 2008; Gowda, Kožíšek et al., 2008; Gowda et al., 2009), in the present work the structure of the title compound (I) is described. There are two independent molecules in the asymmetric unit of (I), Fig. 1. The conformation of the N—H bond in each independent molecule is almost syn to the ortho-chloro substituent, similar to the syn conformation observed with respect to both the 2-chloro and 3-chloro substituents in 2-chloro-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2008a). The conformation of the C=O bond is anti to the N—H bond, also similar to that observed in 2-chloro-N-(2,3-dichlorophenyl)acetamide. The N1–H1N···O1 and N2–H2N···O2 hydrogen bonding pack the molecules into supramolecular chains aligned along the a direction (Table 1, Fig. 2).