organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1439-o1440

(E)-3-[4-(Hex­yl­oxy)phen­yl]-1-(4-hy­droxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 19 May 2009; accepted 22 May 2009; online 29 May 2009)

In the title compound, C21H24O3, the enone group adopts an scis conformation. The planes of the aromatic rings are inclined at an angle of 6.1 (1)°. The alk­oxy tail is not linear, with the maximum deviation from the least-squares plane being 0.375 (2) Å. Mol­ecules are connected into extended chains along the a axis through O—H⋯Ocarbon­yl hydrogen bonds and are inter­linked via C—H⋯O inter­actions to form a two-dimensional array parallel to the ab plane.

Related literature

For the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Zhao et al. (2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027-5029.]); Satyana­rayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883-889.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]). For related structures, see: Razak et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092-o1093.]); Razak et al. (2009a[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881-o882.],b[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133-o1134.]); Ngaini, Fadzillah et al. (2009[Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879-o880.]); Ngaini, Rahman et al. (2009[Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889-o890.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O3

  • Mr = 324.40

  • Orthorhombic, P b c a

  • a = 10.0237 (2) Å

  • b = 9.7695 (2) Å

  • c = 35.3220 (6) Å

  • V = 3458.96 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.12 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.995

  • 25370 measured reflections

  • 5659 independent reflections

  • 3311 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.139

  • S = 1.02

  • 5659 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.89 (3) 1.77 (3) 2.6466 (19) 169 (2)
C1—H1A⋯O1ii 0.93 2.55 3.458 (2) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones derivatives are reported to demonstrate biological properties such as an anti-malarial (Xue et al., 2004), anti-cancer (Bhat et al., 2005), anti-inflammatory (Won et al., 2005), anti-platelet (Zhao et al., 2005) as well as anti-hyperglycemic (Satyanarayana et al., 2004) activities. Synthetic and naturally occurring chalcones have been extensively studied and developed as pharmaceutically important molecules. As part of our studies, we have synthesized the title chalcone derivative, (I), and tested its anti-bacterial activity against E. coli ATCC 8739; the compound showed anti-microbial activity. In this paper, we report the crystal structure of (I).

The conformation of the enone (O2/C7–C9) moiety in (I) is scis with the O2—C7—C8—C9 torsion angle being 5.7 (3)°. The mean plane through the enone moiety makes dihedral angles of 15.9 (1)° and 10.9 (1)°, with the C1–C6 and C10–C15 aromatic rings, respectively. The two aromatic rings form a dihedral angle of 6.1 (1)°.

The short H1A···H8A (2.16 Å) contact resulted in the slight widening of the C1—C6—C7 (123.0 (2)°) and C6—C7—C8 (120.7 (2)°) angles whereas the widening of C8—C9—C10 and C9—C10—C15 angles to 129.0 (2)° and 123.7 (2)° respectively, resulted from the close interatomic contact of H8A···H15A (2.34 Å). Correspondingly, the opening of the O3—C13—C12 (124.9 (2)°) angle is the consequence of strain induced by short H12A···H16A (2.28 Å) and H12A···H16B (2.38 Å) contacts. Similar features can also be found in previously reported related structures (Razak et al., 2009; Razak et al., 2009a,b; Ngaini, Fadzillah et al., 2009; Ngaini, Rahman et al., 2009).

Even though the C16—O3—C13—C12 torsion angle is 0.8 (3)°, only part of the alkoxyl tail, O3/C16–C18, is co-planar with the attached aromatic ring [maximum deviation of the least-squares plane of O3/C16–C18 is -0.002 (2) Å]. The alkoxyl chain is twisted about the C19—C20 bond as shown by the C18—C19—C20—C21 torsion angle being -73.4 (2)°. The least-squares plane through the the alkoxyl chain, O3/C16–C21, [maximum deviation of 0.375 (2) Å at C16] makes a dihedral angle of 49.1 (2)° with the attached aromatic ring.

In the crystal structure, intermolecular O1—H1O1···O2 hydrogen bonds between the hydroxy and keto groups link the molecules into extended chains along the a axis, Table 1. The chains are interlinked via C1—H1A···O1 interactions into a 2-D array parallel to the ab-plane, Table 1 and Fig. 2.

Related literature top

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Satyanarayana et al. (2004); Won et al. (2005). For related structures, see: Razak et al. (2009); Razak et al. (2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-hydroxyacetophenone (1.36 g, 10 mmol), 4-hexyloxybenzaldehyde (2.06 ml, 10 mmol) and KOH (2.02 g, 36 mmol) in methanol (30 ml) was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in a hexane–ethanol (7:1) solution, followed by few days of slow evaporation, crystals were collected.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely; O—H = 0.89 (3) Å. All the C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq (methyl-H atoms) and 1.2Ueq (other H atoms). The rotating model group was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing in (I), viewed down the a axis. Intermolecular O—H···O hydrogen bonding and C—H···O contacts are shown as dashed lines. H atoms not involved in hydrogen bondings are omitted for clarity.
(E)-3-[4-(Hexyloxy)phenyl]-1-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C21H24O3F(000) = 1392
Mr = 324.40Dx = 1.246 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2200 reflections
a = 10.0237 (2) Åθ = 2.3–22.0°
b = 9.7695 (2) ŵ = 0.08 mm1
c = 35.3220 (6) ÅT = 100 K
V = 3458.96 (12) Å3Block, colourless
Z = 80.25 × 0.12 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5659 independent reflections
Radiation source: sealed tube3311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 31.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.980, Tmax = 0.995k = 1414
25370 measured reflectionsl = 5150
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.4637P]
where P = (Fo2 + 2Fc2)/3
5659 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H24O3V = 3458.96 (12) Å3
Mr = 324.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0237 (2) ŵ = 0.08 mm1
b = 9.7695 (2) ÅT = 100 K
c = 35.3220 (6) Å0.25 × 0.12 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3311 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.086
25370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
5659 reflectionsΔρmin = 0.25 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45711 (14)0.93154 (14)0.31262 (3)0.0203 (3)
O20.17214 (13)0.81942 (14)0.15690 (3)0.0216 (3)
O30.47446 (13)0.24927 (13)0.00413 (4)0.0207 (3)
C10.43756 (18)0.74282 (19)0.22313 (5)0.0177 (4)
H1A0.47830.66960.21090.021*
C20.47890 (19)0.77884 (18)0.25929 (5)0.0183 (4)
H2A0.54520.72860.27140.022*
C30.42085 (18)0.89013 (19)0.27736 (5)0.0172 (4)
C40.32103 (19)0.96503 (19)0.25923 (5)0.0198 (4)
H4A0.28271.04020.27120.024*
C50.27945 (18)0.92715 (19)0.22348 (5)0.0193 (4)
H5A0.21270.97730.21160.023*
C60.33582 (18)0.81466 (18)0.20480 (5)0.0163 (4)
C70.28184 (18)0.77389 (19)0.16745 (5)0.0175 (4)
C80.35542 (18)0.67861 (19)0.14301 (5)0.0177 (4)
H8A0.43360.63790.15160.021*
C90.30968 (18)0.65064 (19)0.10828 (5)0.0184 (4)
H9A0.23570.70100.10070.022*
C100.35965 (18)0.55225 (18)0.08071 (5)0.0169 (4)
C110.29114 (19)0.5369 (2)0.04661 (5)0.0201 (4)
H11A0.21970.59480.04150.024*
C120.32554 (19)0.43872 (19)0.02008 (5)0.0201 (4)
H12A0.27730.43030.00230.024*
C130.43319 (18)0.35286 (18)0.02730 (5)0.0176 (4)
C140.50604 (18)0.3682 (2)0.06095 (5)0.0193 (4)
H14A0.57950.31250.06550.023*
C150.46928 (18)0.46577 (19)0.08730 (5)0.0180 (4)
H15A0.51760.47430.10960.022*
C160.40164 (19)0.2288 (2)0.03062 (5)0.0207 (4)
H16A0.40100.31250.04540.025*
H16B0.31010.20340.02510.025*
C170.47013 (19)0.11601 (19)0.05233 (5)0.0211 (4)
H17A0.47080.03340.03710.025*
H17B0.56200.14200.05710.025*
C180.4013 (2)0.0863 (2)0.08992 (5)0.0229 (4)
H18A0.38740.17170.10330.027*
H18B0.31450.04620.08500.027*
C190.48161 (19)0.0107 (2)0.11501 (5)0.0219 (4)
H19A0.49970.09390.10090.026*
H19B0.56670.03180.12080.026*
C200.4129 (2)0.0490 (2)0.15221 (5)0.0274 (5)
H20A0.37980.03360.16420.033*
H20B0.47810.08990.16910.033*
C210.2977 (2)0.1482 (2)0.14688 (6)0.0286 (5)
H21A0.26140.17220.17110.043*
H21B0.22970.10570.13170.043*
H21C0.32910.22920.13440.043*
H1O10.529 (3)0.886 (3)0.3205 (7)0.057 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0221 (7)0.0227 (7)0.0162 (6)0.0010 (6)0.0029 (6)0.0022 (6)
O20.0217 (7)0.0263 (7)0.0169 (6)0.0043 (6)0.0023 (5)0.0003 (6)
O30.0243 (7)0.0219 (7)0.0160 (6)0.0026 (6)0.0010 (5)0.0046 (5)
C10.0195 (9)0.0155 (9)0.0182 (9)0.0003 (8)0.0009 (8)0.0010 (7)
C20.0206 (10)0.0158 (9)0.0184 (9)0.0010 (8)0.0036 (8)0.0011 (7)
C30.0191 (9)0.0193 (9)0.0132 (8)0.0041 (7)0.0003 (7)0.0001 (7)
C40.0196 (9)0.0177 (9)0.0221 (9)0.0013 (8)0.0019 (8)0.0025 (8)
C50.0192 (9)0.0193 (9)0.0194 (9)0.0008 (8)0.0023 (7)0.0002 (8)
C60.0179 (9)0.0163 (8)0.0148 (8)0.0011 (7)0.0003 (7)0.0014 (7)
C70.0199 (9)0.0173 (9)0.0153 (9)0.0027 (8)0.0010 (7)0.0023 (7)
C80.0172 (9)0.0183 (9)0.0175 (9)0.0012 (8)0.0004 (7)0.0023 (7)
C90.0179 (9)0.0194 (9)0.0178 (9)0.0005 (7)0.0020 (7)0.0020 (8)
C100.0189 (9)0.0177 (9)0.0141 (8)0.0026 (7)0.0012 (7)0.0015 (7)
C110.0201 (10)0.0217 (10)0.0184 (9)0.0016 (8)0.0006 (8)0.0025 (8)
C120.0228 (10)0.0239 (10)0.0135 (8)0.0005 (8)0.0026 (8)0.0007 (8)
C130.0211 (9)0.0161 (9)0.0155 (9)0.0023 (7)0.0032 (7)0.0018 (7)
C140.0167 (9)0.0218 (9)0.0195 (9)0.0001 (8)0.0001 (7)0.0021 (8)
C150.0198 (9)0.0214 (9)0.0128 (8)0.0032 (8)0.0001 (7)0.0017 (7)
C160.0235 (10)0.0228 (10)0.0157 (9)0.0004 (8)0.0013 (8)0.0010 (8)
C170.0238 (10)0.0208 (9)0.0188 (9)0.0022 (8)0.0017 (8)0.0009 (8)
C180.0270 (11)0.0223 (10)0.0194 (9)0.0038 (8)0.0010 (8)0.0017 (8)
C190.0253 (10)0.0203 (9)0.0201 (9)0.0005 (8)0.0050 (8)0.0014 (8)
C200.0399 (13)0.0245 (10)0.0178 (10)0.0012 (10)0.0031 (9)0.0018 (8)
C210.0344 (12)0.0286 (11)0.0228 (10)0.0021 (10)0.0038 (9)0.0021 (9)
Geometric parameters (Å, º) top
O1—C31.359 (2)C12—C131.390 (3)
O1—H1O10.89 (3)C12—H12A0.9300
O2—C71.243 (2)C13—C141.403 (2)
O3—C131.366 (2)C14—C151.382 (3)
O3—C161.442 (2)C14—H14A0.9300
C1—C21.388 (2)C15—H15A0.9300
C1—C61.397 (2)C16—C171.508 (3)
C1—H1A0.9300C16—H16A0.9700
C2—C31.389 (2)C16—H16B0.9700
C2—H2A0.9300C17—C181.524 (3)
C3—C41.395 (3)C17—H17A0.9700
C4—C51.380 (2)C17—H17B0.9700
C4—H4A0.9300C18—C191.526 (3)
C5—C61.401 (2)C18—H18A0.9700
C5—H5A0.9300C18—H18B0.9700
C6—C71.481 (2)C19—C201.530 (3)
C7—C81.468 (3)C19—H19A0.9700
C8—C91.338 (2)C19—H19B0.9700
C8—H8A0.9300C20—C211.519 (3)
C9—C101.457 (2)C20—H20A0.9700
C9—H9A0.9300C20—H20B0.9700
C10—C111.394 (2)C21—H21A0.9600
C10—C151.405 (3)C21—H21B0.9600
C11—C121.385 (3)C21—H21C0.9600
C11—H11A0.9300
C3—O1—H1O1110.8 (17)C15—C14—H14A119.8
C13—O3—C16117.35 (14)C13—C14—H14A119.8
C2—C1—C6121.13 (17)C14—C15—C10120.75 (17)
C2—C1—H1A119.4C14—C15—H15A119.6
C6—C1—H1A119.4C10—C15—H15A119.6
C1—C2—C3119.76 (17)O3—C16—C17107.68 (15)
C1—C2—H2A120.1O3—C16—H16A110.2
C3—C2—H2A120.1C17—C16—H16A110.2
O1—C3—C2122.84 (16)O3—C16—H16B110.2
O1—C3—C4117.15 (16)C17—C16—H16B110.2
C2—C3—C4120.01 (16)H16A—C16—H16B108.5
C5—C4—C3119.72 (17)C16—C17—C18112.12 (16)
C5—C4—H4A120.1C16—C17—H17A109.2
C3—C4—H4A120.1C18—C17—H17A109.2
C4—C5—C6121.30 (17)C16—C17—H17B109.2
C4—C5—H5A119.4C18—C17—H17B109.2
C6—C5—H5A119.4H17A—C17—H17B107.9
C1—C6—C5118.05 (16)C17—C18—C19112.69 (16)
C1—C6—C7123.00 (16)C17—C18—H18A109.1
C5—C6—C7118.90 (16)C19—C18—H18A109.1
O2—C7—C8119.66 (16)C17—C18—H18B109.1
O2—C7—C6119.61 (16)C19—C18—H18B109.1
C8—C7—C6120.73 (16)H18A—C18—H18B107.8
C9—C8—C7119.77 (17)C18—C19—C20114.40 (17)
C9—C8—H8A120.1C18—C19—H19A108.7
C7—C8—H8A120.1C20—C19—H19A108.7
C8—C9—C10129.03 (18)C18—C19—H19B108.7
C8—C9—H9A115.5C20—C19—H19B108.7
C10—C9—H9A115.5H19A—C19—H19B107.6
C11—C10—C15117.62 (17)C21—C20—C19113.07 (16)
C11—C10—C9118.60 (17)C21—C20—H20A109.0
C15—C10—C9123.68 (16)C19—C20—H20A109.0
C12—C11—C10122.42 (18)C21—C20—H20B109.0
C12—C11—H11A118.8C19—C20—H20B109.0
C10—C11—H11A118.8H20A—C20—H20B107.8
C11—C12—C13119.14 (17)C20—C21—H21A109.5
C11—C12—H12A120.4C20—C21—H21B109.5
C13—C12—H12A120.4H21A—C21—H21B109.5
O3—C13—C12124.91 (16)C20—C21—H21C109.5
O3—C13—C14115.42 (16)H21A—C21—H21C109.5
C12—C13—C14119.66 (17)H21B—C21—H21C109.5
C15—C14—C13120.37 (18)
C6—C1—C2—C31.6 (3)C8—C9—C10—C150.9 (3)
C1—C2—C3—O1179.56 (16)C15—C10—C11—C121.6 (3)
C1—C2—C3—C40.2 (3)C9—C10—C11—C12174.97 (17)
O1—C3—C4—C5179.55 (16)C10—C11—C12—C130.8 (3)
C2—C3—C4—C50.7 (3)C16—O3—C13—C120.8 (3)
C3—C4—C5—C60.2 (3)C16—O3—C13—C14179.42 (15)
C2—C1—C6—C52.0 (3)C11—C12—C13—O3177.71 (17)
C2—C1—C6—C7175.46 (17)C11—C12—C13—C140.9 (3)
C4—C5—C6—C11.1 (3)O3—C13—C14—C15177.06 (16)
C4—C5—C6—C7176.46 (17)C12—C13—C14—C151.7 (3)
C1—C6—C7—O2162.42 (17)C13—C14—C15—C100.8 (3)
C5—C6—C7—O215.0 (3)C11—C10—C15—C140.8 (3)
C1—C6—C7—C816.6 (3)C9—C10—C15—C14175.58 (17)
C5—C6—C7—C8165.93 (16)C13—O3—C16—C17176.52 (15)
O2—C7—C8—C95.7 (3)O3—C16—C17—C18179.69 (15)
C6—C7—C8—C9175.26 (17)C16—C17—C18—C19170.71 (16)
C7—C8—C9—C10174.51 (17)C17—C18—C19—C20177.08 (17)
C8—C9—C10—C11177.22 (19)C18—C19—C20—C2173.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.89 (3)1.77 (3)2.6466 (19)169 (2)
C1—H1A···O1ii0.932.553.458 (2)164
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H24O3
Mr324.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.0237 (2), 9.7695 (2), 35.3220 (6)
V3)3458.96 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.12 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
25370, 5659, 3311
Rint0.086
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.139, 1.02
No. of reflections5659
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.89 (3)1.77 (3)2.6466 (19)169 (2)
C1—H1A···O1ii0.932.553.458 (2)164
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312) and a Research University Golden Goose grant (No. 1001/PFIZIK/811012). ZN and HH thank Universiti Malaysia Sarawak for a Geran Penyelidikan Dana Khas Inovasi grant [No. DI/01/2007(01)]. NIAR thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for postgraduate studies.

References

First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881–o882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133–o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092–o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1439-o1440
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds