organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexane-1,6-di­ammonium bis­­(pyridine-2-carboxyl­ate)

aSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 20 May 2009; accepted 22 May 2009; online 29 May 2009)

The title compound, C6H18N22+·2C6H4NO2, consists of a doubly protonated hexa­methyl­enediammonium dication and two pyridine-2-carboxyl­ate anions. These ions inter­act by means of inter­molecular N—H⋯O and N—H⋯N hydrogen bonds to form a two-dimensional array. The carboxyl­ate groups of the anions appear to be delocalized on the basis of the C—O bond lengths.

Related literature

For the crystal structures of (C6H18N2)X2 (X = Cl, Br or I), see: Binnie & Robertson (1949a[Binnie, W. P. & Robertson, J. M. (1949a). Acta Cryst. 2, 116-120.],b[Binnie, W. P. & Robertson, J. M. (1949b). Acta Cryst. 2, 180-188.]); Borkakoti et al. (1978[Borkakoti, N., Lindley, P. F., Moss, D. S. & Palmer, R. A. (1978). Acta Cryst. B34, 3431-3433.]); van Blerk & Kruger (2008[Blerk, C. van & Kruger, G. J. (2008). Acta Cryst. C64, o537-o542.]). For details of some other hexane-1,6-diammonium compounds, see: Phan Thanh et al. (2000[Phan Thanh, S., Renaudin, J. & Maisonneuve, V. (2000). Solid State Sci. 2, 143-148.]); Mousdis et al. (2000[Mousdis, G. A., Papavassiliou, G. C., Raptopoulou, C. P. & Terzis, A. (2000). J. Mater. Chem. 10, 515-518.]); Rakovský et al. (2002[Rakovský, E., Žúrková, L. & Marek, J. (2002). Monatsh. Chem. 133, 277-283.]); Dammak et al. (2007[Dammak, T., Fourati, N., Boughzala, H., Mlayah, A. & Abid, Y. (2007). J. Lumin. 127, 404-408.]); Sun et al. (2007[Sun, D., Zhang, H., Zhang, J., Zheng, G., Yu, J. & Gao, S. (2007). J. Solid State Chem. 180, 393-399.]); Yang et al. (2007[Yang, S., Li, G., Tian, S., Liao, F., Xiong, M. & Lin, J. (2007). J. Solid State Chem. 180, 2225-2232.]); Wilkinson & Harrison (2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m902-m904.]); Wang & Wei (2007[Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o995-o996.]). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998[Hamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54 IUC9800049.]).

[Scheme 1]

Experimental

Crystal data
  • C6H18N22+·2C6H4NO2

  • Mr = 362.43

  • Monoclinic, P 21 /c

  • a = 9.8182 (7) Å

  • b = 9.1569 (7) Å

  • c = 21.6423 (17) Å

  • β = 99.038 (2)°

  • V = 1921.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.33 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.984

  • 13964 measured reflections

  • 4752 independent reflections

  • 1740 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.124

  • S = 0.93

  • 4752 reflections

  • 339 parameters

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4 1.07 (3) 1.70 (3) 2.747 (3) 165 (3)
N3—H3B⋯O1i 0.96 (3) 2.29 (3) 3.088 (3) 140 (2)
N3—H3B⋯N1i 0.96 (3) 2.15 (3) 2.962 (3) 142 (2)
N3—H3C⋯O1ii 0.92 (3) 1.91 (3) 2.835 (3) 177 (3)
N4—H4A⋯O3iii 0.97 (3) 2.27 (3) 3.064 (3) 139 (2)
N4—H4A⋯N2iii 0.97 (3) 2.12 (3) 2.963 (3) 144 (2)
N4—H4B⋯O3iv 1.07 (3) 1.67 (3) 2.740 (3) 175 (3)
N4—H4C⋯O2v 1.05 (3) 1.70 (4) 2.754 (3) 179 (3)
C1—H1⋯O4vi 1.02 (3) 2.45 (3) 3.328 (4) 145 (2)
C16—H16B⋯O3iv 1.01 (3) 2.58 (3) 3.426 (4) 140.8 (18)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) x+1, y, z; (v) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C6H18N22+.2C6H4NO2-, consists of a doubly protonated hexamethylenediammonium dication and two pyridinecarboxylate anions (Fig. 1). The carboxylate groups of the anions appear to be delocalized on the basis of the C—O bond lengths (C—O: 1.241 (3)–1.247 (3) Å). The N3—C13—C14—C15 and C16—C17—C18—N4 torsion angles [64.9 (4)° and -66.6 (4)°, respectively] display the gauche conformation for the two groups within the dication, whereas C13—C14—C15—C16, C14—C15—C16—C17 and C15—C16—C17—C18 atoms show the anti conformation [their torsion angles lie in the range of 174.6 (3)°–177.3 (3)°]. In the crystal, the component ions interact by means of many intermolecular N—H···O and N—H···N hydrogen bonds and C—H···O contacts to form a 2-D array (Table 1 and Fig. 2).

Related literature top

For the crystal structures of (C6H18N2)X2 (X = Cl, Br or I), see: Binnie & Robertson (1949a,b); Borkakoti et al. (1978); van Blerk & Kruger (2008). For details of some other hexane-1,6-diammonium compounds, see: Phan Thanh et al. (2000); Mousdis et al. (2000); Rakovský et al. (2002); Dammak et al. (2007); Sun et al. (2007); Yang et al. (2007); Wilkinson & Harrison (2007); Wang & Wei (2007). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998).

Experimental top

A solution of 1,6-diaminohexane (0.200 g, 1.721 mmol) and pyridine-2-carboxylic acid (1.180 g, 8.606 mmol) in H2O (20 ml) was stirred for 2 h at 333 K. The solvent was removed under vacuum and the residue was washed with acetone to give a white powder (0.5972 g). Crystals were obtained by slow evaporation from an ethanol solution.

Refinement top

All H atoms were located from Fourier difference maps and refined isotropically; C—H = 0.96 (3)–1.13 (3) Å and N—H = 0.92 (3)–1.07 (3) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents for (I). Hydrogen-bond interactions are drawn with dashed lines.
Hexane-1,6-diammonium bis(pyridine-2-carboxylate) top
Crystal data top
C6H18N22+·2C6H4NO2F(000) = 776
Mr = 362.43Dx = 1.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1472 reflections
a = 9.8182 (7) Åθ = 2.6–24.0°
b = 9.1569 (7) ŵ = 0.09 mm1
c = 21.6423 (17) ÅT = 296 K
β = 99.038 (2)°Block, colourless
V = 1921.6 (3) Å30.33 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4752 independent reflections
Radiation source: fine-focus sealed tube1740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.685, Tmax = 0.984k = 1212
13964 measured reflectionsl = 2128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124All H-atom parameters refined
S = 0.93 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max < 0.001
339 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C6H18N22+·2C6H4NO2V = 1921.6 (3) Å3
Mr = 362.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8182 (7) ŵ = 0.09 mm1
b = 9.1569 (7) ÅT = 296 K
c = 21.6423 (17) Å0.33 × 0.25 × 0.18 mm
β = 99.038 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1740 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.984Rint = 0.089
13964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.124All H-atom parameters refined
S = 0.93Δρmax = 0.15 e Å3
4752 reflectionsΔρmin = 0.15 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39197 (19)0.3983 (2)0.43294 (9)0.0607 (6)
O20.3440 (2)0.1705 (2)0.40142 (11)0.0809 (7)
N10.5671 (2)0.4287 (2)0.34905 (10)0.0514 (6)
C10.6534 (3)0.4405 (4)0.30699 (15)0.0632 (9)
H10.704 (3)0.538 (3)0.3085 (12)0.078 (10)*
C20.6711 (3)0.3335 (4)0.26461 (16)0.0684 (9)
H20.739 (3)0.351 (3)0.2336 (14)0.100 (11)*
C30.5975 (4)0.2072 (4)0.26545 (16)0.0702 (10)
H30.605 (3)0.128 (3)0.2356 (13)0.080 (10)*
C40.5110 (3)0.1905 (3)0.30952 (14)0.0586 (8)
H40.458 (2)0.099 (3)0.3141 (12)0.061 (8)*
C50.4980 (3)0.3030 (3)0.35030 (12)0.0428 (6)
C60.4034 (3)0.2901 (3)0.39927 (14)0.0508 (7)
O30.1328 (2)0.4425 (2)0.07130 (9)0.0654 (6)
O40.2162 (2)0.2478 (2)0.12601 (10)0.0760 (7)
N20.0026 (2)0.5187 (3)0.16852 (11)0.0617 (7)
C70.0394 (4)0.5760 (4)0.21915 (18)0.0749 (10)
H70.127 (3)0.630 (3)0.2088 (13)0.084 (10)*
C80.0265 (4)0.5565 (4)0.27899 (17)0.0718 (10)
H80.010 (3)0.603 (3)0.3131 (14)0.080 (10)*
C90.1416 (4)0.4708 (4)0.28807 (15)0.0653 (9)
H90.195 (3)0.456 (3)0.3287 (12)0.066 (9)*
C100.1851 (3)0.4064 (3)0.23713 (14)0.0545 (8)
H100.268 (3)0.344 (3)0.2409 (13)0.083 (10)*
C110.1141 (3)0.4333 (3)0.17813 (13)0.0443 (7)
C120.1582 (3)0.3693 (3)0.12002 (14)0.0479 (7)
N30.4265 (3)0.1748 (3)0.06174 (13)0.0505 (7)
H3A0.334 (3)0.200 (3)0.0800 (14)0.114 (12)*
H3B0.467 (3)0.090 (3)0.0830 (15)0.095 (12)*
H3C0.415 (3)0.154 (3)0.0194 (16)0.092 (12)*
N41.1032 (3)0.3355 (3)0.04832 (13)0.0487 (6)
H4A1.046 (3)0.403 (3)0.0754 (12)0.068 (10)*
H4B1.117 (3)0.372 (3)0.0007 (16)0.099 (11)*
H4C1.196 (4)0.333 (3)0.0672 (15)0.126 (13)*
C130.5150 (3)0.3063 (4)0.07920 (18)0.0655 (9)
H13A0.500 (3)0.334 (3)0.1259 (15)0.101 (11)*
H13B0.475 (3)0.388 (3)0.0459 (14)0.099 (11)*
C140.6652 (4)0.2789 (4)0.07806 (17)0.0676 (10)
H14A0.718 (3)0.372 (3)0.0970 (13)0.086 (10)*
H14B0.697 (3)0.194 (3)0.1038 (14)0.090 (12)*
C150.6995 (3)0.2449 (4)0.01361 (16)0.0600 (9)
H15A0.654 (3)0.150 (3)0.0029 (13)0.073 (9)*
H15B0.654 (3)0.336 (3)0.0184 (14)0.100 (11)*
C160.8544 (3)0.2304 (4)0.01326 (16)0.0578 (8)
H16A0.895 (3)0.153 (3)0.0455 (12)0.072 (9)*
H16B0.898 (2)0.328 (3)0.0250 (12)0.070 (9)*
C170.8877 (3)0.1893 (4)0.05053 (16)0.0623 (9)
H17A0.841 (3)0.261 (3)0.0839 (13)0.075 (10)*
H17B0.851 (3)0.083 (3)0.0641 (14)0.103 (11)*
C181.0393 (4)0.1871 (4)0.05523 (19)0.0660 (9)
H18A1.054 (3)0.150 (3)0.1001 (15)0.110 (12)*
H18B1.088 (3)0.123 (3)0.0212 (15)0.102 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0655 (13)0.0674 (13)0.0506 (12)0.0062 (11)0.0135 (11)0.0096 (11)
O20.0771 (15)0.0718 (15)0.1046 (19)0.0218 (12)0.0482 (14)0.0166 (14)
N10.0577 (15)0.0545 (15)0.0435 (14)0.0030 (12)0.0132 (12)0.0014 (12)
C10.077 (2)0.062 (2)0.053 (2)0.0093 (19)0.0165 (19)0.0003 (19)
C20.069 (2)0.079 (3)0.062 (2)0.006 (2)0.0240 (19)0.007 (2)
C30.083 (2)0.071 (2)0.061 (2)0.008 (2)0.026 (2)0.019 (2)
C40.065 (2)0.0547 (19)0.058 (2)0.0009 (17)0.0143 (17)0.0086 (18)
C50.0387 (15)0.0484 (16)0.0397 (16)0.0027 (14)0.0009 (13)0.0009 (15)
C60.0406 (17)0.0568 (19)0.0536 (19)0.0032 (16)0.0037 (15)0.0004 (17)
O30.0893 (16)0.0646 (13)0.0413 (12)0.0046 (11)0.0075 (11)0.0000 (12)
O40.0864 (16)0.0717 (14)0.0775 (16)0.0331 (13)0.0361 (13)0.0103 (13)
N20.0638 (17)0.0723 (17)0.0496 (16)0.0235 (14)0.0108 (14)0.0054 (14)
C70.076 (3)0.083 (3)0.066 (2)0.031 (2)0.014 (2)0.005 (2)
C80.088 (3)0.073 (2)0.060 (2)0.010 (2)0.029 (2)0.002 (2)
C90.077 (3)0.077 (2)0.041 (2)0.001 (2)0.0073 (19)0.007 (2)
C100.0522 (19)0.062 (2)0.0489 (19)0.0088 (16)0.0048 (17)0.0112 (18)
C110.0437 (17)0.0441 (16)0.0447 (17)0.0016 (14)0.0055 (14)0.0061 (15)
C120.0424 (17)0.0504 (18)0.0510 (19)0.0023 (14)0.0073 (15)0.0037 (16)
N30.0516 (16)0.0521 (16)0.0487 (17)0.0030 (14)0.0111 (14)0.0051 (15)
N40.0480 (15)0.0531 (16)0.0445 (15)0.0048 (13)0.0060 (14)0.0050 (14)
C130.066 (2)0.055 (2)0.079 (3)0.0051 (18)0.021 (2)0.008 (2)
C140.063 (2)0.070 (2)0.072 (3)0.010 (2)0.016 (2)0.013 (2)
C150.052 (2)0.066 (2)0.063 (2)0.0077 (18)0.0128 (18)0.000 (2)
C160.052 (2)0.058 (2)0.064 (2)0.0051 (17)0.0086 (17)0.0004 (19)
C170.059 (2)0.069 (2)0.061 (2)0.0086 (19)0.0140 (18)0.008 (2)
C180.069 (2)0.060 (2)0.074 (3)0.0004 (19)0.025 (2)0.010 (2)
Geometric parameters (Å, º) top
O1—C61.245 (3)N3—C131.498 (4)
O2—C61.245 (3)N3—H3A1.07 (3)
N1—C51.339 (3)N3—H3B0.96 (3)
N1—C11.341 (3)N3—H3C0.92 (3)
C1—C21.371 (4)N4—C181.495 (4)
C1—H11.02 (3)N4—H4A0.97 (3)
C2—C31.365 (4)N4—H4B1.07 (3)
C2—H21.03 (3)N4—H4C1.05 (3)
C3—C41.381 (4)C13—C141.500 (4)
C3—H30.98 (3)C13—H13A1.08 (3)
C4—C51.375 (3)C13—H13B1.07 (3)
C4—H41.00 (2)C14—C151.518 (4)
C5—C61.520 (3)C14—H14A1.05 (3)
O3—C121.241 (3)C14—H14B0.98 (3)
O4—C121.247 (3)C15—C161.528 (4)
N2—C111.335 (3)C15—H15A1.01 (3)
N2—C71.337 (4)C15—H15B1.13 (3)
C7—C81.365 (4)C16—C171.515 (4)
C7—H70.99 (3)C16—H16A1.03 (3)
C8—C91.365 (4)C16—H16B1.01 (3)
C8—H80.97 (3)C17—C181.508 (4)
C9—C101.376 (4)C17—H17A1.03 (3)
C9—H90.96 (3)C17—H17B1.06 (3)
C10—C111.378 (4)C18—H18A1.06 (3)
C10—H100.99 (3)C18—H18B1.01 (3)
C11—C121.512 (4)
C5—N1—C1117.3 (3)H3B—N3—H3C107 (3)
N1—C1—C2123.8 (3)C18—N4—H4A108.7 (15)
N1—C1—H1114.0 (15)C18—N4—H4B111.5 (16)
C2—C1—H1122.2 (15)H4A—N4—H4B111 (2)
C3—C2—C1118.2 (3)C18—N4—H4C108.3 (18)
C3—C2—H2122.6 (17)H4A—N4—H4C104 (2)
C1—C2—H2119.1 (17)H4B—N4—H4C113 (2)
C2—C3—C4119.1 (3)N3—C13—C14113.3 (3)
C2—C3—H3121.3 (16)N3—C13—H13A105.3 (16)
C4—C3—H3119.6 (16)C14—C13—H13A109.7 (16)
C5—C4—C3119.3 (3)N3—C13—H13B104.9 (16)
C5—C4—H4117.4 (15)C14—C13—H13B111.3 (16)
C3—C4—H4123.3 (15)H13A—C13—H13B112 (2)
N1—C5—C4122.2 (3)C13—C14—C15114.2 (3)
N1—C5—C6116.6 (2)C13—C14—H14A106.5 (15)
C4—C5—C6121.2 (3)C15—C14—H14A111.1 (15)
O2—C6—O1126.3 (3)C13—C14—H14B110.6 (18)
O2—C6—C5115.8 (3)C15—C14—H14B105.3 (18)
O1—C6—C5117.9 (3)H14A—C14—H14B109 (2)
C11—N2—C7116.9 (3)C14—C15—C16112.8 (3)
N2—C7—C8124.4 (3)C14—C15—H15A110.5 (15)
N2—C7—H7112.3 (17)C16—C15—H15A108.0 (15)
C8—C7—H7123.2 (17)C14—C15—H15B106.8 (15)
C9—C8—C7118.0 (3)C16—C15—H15B111.0 (14)
C9—C8—H8122.6 (17)H15A—C15—H15B108 (2)
C7—C8—H8119.4 (17)C17—C16—C15112.5 (3)
C8—C9—C10119.0 (3)C17—C16—H16A109.2 (14)
C8—C9—H9122.0 (16)C15—C16—H16A109.9 (14)
C10—C9—H9118.9 (16)C17—C16—H16B107.8 (15)
C9—C10—C11119.4 (3)C15—C16—H16B107.9 (14)
C9—C10—H10122.4 (17)H16A—C16—H16B110 (2)
C11—C10—H10118.2 (17)C18—C17—C16114.9 (3)
N2—C11—C10122.2 (3)C18—C17—H17A107.2 (15)
N2—C11—C12115.7 (3)C16—C17—H17A110.3 (15)
C10—C11—C12122.2 (3)C18—C17—H17B105.3 (16)
O3—C12—O4126.7 (3)C16—C17—H17B111.6 (16)
O3—C12—C11116.8 (3)H17A—C17—H17B107 (2)
O4—C12—C11116.5 (3)N4—C18—C17112.6 (3)
C13—N3—H3A103.1 (16)N4—C18—H18A105.7 (17)
C13—N3—H3B110.6 (18)C17—C18—H18A110.1 (17)
H3A—N3—H3B108 (2)N4—C18—H18B108.5 (18)
C13—N3—H3C113.2 (19)C17—C18—H18B108.7 (18)
H3A—N3—H3C115 (3)H18A—C18—H18B111 (2)
C5—N1—C1—C22.0 (4)C8—C9—C10—C111.9 (5)
N1—C1—C2—C30.5 (5)C7—N2—C11—C101.1 (4)
C1—C2—C3—C41.4 (5)C7—N2—C11—C12179.5 (3)
C2—C3—C4—C51.8 (5)C9—C10—C11—N20.9 (4)
C1—N1—C5—C41.5 (4)C9—C10—C11—C12178.5 (3)
C1—N1—C5—C6178.6 (2)N2—C11—C12—O330.2 (3)
C3—C4—C5—N10.3 (4)C10—C11—C12—O3149.2 (3)
C3—C4—C5—C6179.6 (3)N2—C11—C12—O4149.6 (2)
N1—C5—C6—O2177.3 (3)C10—C11—C12—O431.0 (4)
C4—C5—C6—O22.8 (4)N3—C13—C14—C1564.9 (4)
N1—C5—C6—O12.9 (4)C13—C14—C15—C16175.1 (3)
C4—C5—C6—O1177.0 (3)C14—C15—C16—C17177.3 (3)
C11—N2—C7—C82.2 (5)C15—C16—C17—C18174.6 (3)
N2—C7—C8—C91.2 (6)C16—C17—C18—N466.6 (4)
C7—C8—C9—C100.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O41.07 (3)1.70 (3)2.747 (3)165 (3)
N3—H3B···O1i0.96 (3)2.29 (3)3.088 (3)140 (2)
N3—H3B···N1i0.96 (3)2.15 (3)2.962 (3)142 (2)
N3—H3C···O1ii0.92 (3)1.91 (3)2.835 (3)177 (3)
N4—H4A···O3iii0.97 (3)2.27 (3)3.064 (3)139 (2)
N4—H4A···N2iii0.97 (3)2.12 (3)2.963 (3)144 (2)
N4—H4B···O3iv1.07 (3)1.67 (3)2.740 (3)175 (3)
N4—H4C···O2v1.05 (3)1.70 (4)2.754 (3)179 (3)
C1—H1···O4vi1.02 (3)2.45 (3)3.328 (4)145 (2)
C16—H16B···O3iv1.01 (3)2.58 (3)3.426 (4)140.8 (18)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H18N22+·2C6H4NO2
Mr362.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.8182 (7), 9.1569 (7), 21.6423 (17)
β (°) 99.038 (2)
V3)1921.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.685, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13964, 4752, 1740
Rint0.089
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.124, 0.93
No. of reflections4752
No. of parameters339
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O41.07 (3)1.70 (3)2.747 (3)165 (3)
N3—H3B···O1i0.96 (3)2.29 (3)3.088 (3)140 (2)
N3—H3B···N1i0.96 (3)2.15 (3)2.962 (3)142 (2)
N3—H3C···O1ii0.92 (3)1.91 (3)2.835 (3)177 (3)
N4—H4A···O3iii0.97 (3)2.27 (3)3.064 (3)139 (2)
N4—H4A···N2iii0.97 (3)2.12 (3)2.963 (3)144 (2)
N4—H4B···O3iv1.07 (3)1.67 (3)2.740 (3)175 (3)
N4—H4C···O2v1.05 (3)1.70 (4)2.754 (3)179 (3)
C1—H1···O4vi1.02 (3)2.45 (3)3.328 (4)145 (2)
C16—H16B···O3iv1.01 (3)2.58 (3)3.426 (4)140.8 (18)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (grant No. KRF-2007–412-J02001).

References

First citationBinnie, W. P. & Robertson, J. M. (1949a). Acta Cryst. 2, 116–120.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBinnie, W. P. & Robertson, J. M. (1949b). Acta Cryst. 2, 180–188.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2008). Acta Cryst. C64, o537–o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBorkakoti, N., Lindley, P. F., Moss, D. S. & Palmer, R. A. (1978). Acta Cryst. B34, 3431–3433.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDammak, T., Fourati, N., Boughzala, H., Mlayah, A. & Abid, Y. (2007). J. Lumin. 127, 404–408.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54 IUC9800049.  Google Scholar
First citationMousdis, G. A., Papavassiliou, G. C., Raptopoulou, C. P. & Terzis, A. (2000). J. Mater. Chem. 10, 515–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhan Thanh, S., Renaudin, J. & Maisonneuve, V. (2000). Solid State Sci. 2, 143–148.  CSD CrossRef Google Scholar
First citationRakovský, E., Žúrková, L. & Marek, J. (2002). Monatsh. Chem. 133, 277–283.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Zhang, H., Zhang, J., Zheng, G., Yu, J. & Gao, S. (2007). J. Solid State Chem. 180, 393–399.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o995–o996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m902–m904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S., Li, G., Tian, S., Liao, F., Xiong, M. & Lin, J. (2007). J. Solid State Chem. 180, 2225–2232.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds