inorganic compounds
Lithium diaquanickel(II) catena-borodiphosphate(V) monohydrate
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: zay@hpu.edu.cn
The title borophosphate LiNi(H2O)2[BP2O8]·H2O was synthesized under hydrothermal conditions. The is isotypic with the Mg analogue and features helical [BP2O8]3− borophosphate ribbons, constructed by BO4 (2 symmetry) and PO4 tetrahedra. The borate groups share all their oxygen apices with adjacent phosphate tetrahedra. The ribbons are connected via Ni2+ cations that are located on twofold rotation axes. The cations have a slightly distorted octahedral oxygen coordination by four O atoms from the anion and by two water molecules. The voids within the helices are occupied by Li+ cations, likewise located on twofold rotation axes, in an irregular environment of five O atoms. The structure is stabilized by O—H⋯O hydrogen bonds between coordinated or uncoordinated water molecules and O atoms that are part of the helices.
Related literature
For the isotypic Mg analogue, see: Lin et al. (2008). For other borophosphates, see: Boy & Kniep (2001); Kniep et al. (1998). A review on the structural chemistry of borophosphates is given by Ewald et al. (2007).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809014652/wm2227sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014652/wm2227Isup2.hkl
Green block-shaped crystals were synthesized hydrothermally from a mixture of Ni(NO3)2, Li2B4O7, water and H3PO4. In a typical synthesis, 0.87 g Ni(NO3)2.6H2O was dissolved in a mixture of 5 mL water, 1.691 g Li2B4O7 and 2 ml H3PO4 (85%wt ) under constant stirring. Finally, the mixture was kept in a 30 ml Teflon-lined steel autoclave at 443 K for 6d. The autoclave was slowly cooled to room temperature.
The highest peak in the difference map is 1.29Å from atom H6, and the minimum peak is 0.48Å from atom P2.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A part of the structure of LiNi(H2O)2[BP2O8].H2O with displacement ellipsoids drawn at the 50% the probability level. Symmetry codes: (i) 1 - y, 1 - x, 0.16667 - z; (ii) 1 - x, 1 - x + y, 0.33333 - z; (iii) x-y, x, -0.16667 + z; (iv) y, x, 0.66667 - z; (v) y, -x + y, 0.16667 + z; (vi) x, x-y, 0.83333 - z. | |
Fig. 2. Polyhedral diagram for LiNi(H2O)2[BP2O8].H2O in projection along [001]. Colour code: purple P, orange B, blue Ni, red OW6 and green Li. |
LiNi(H2O)2[BP2O8]·H2O | Dx = 2.686 Mg m−3 |
Mr = 320.44 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6522 | Cell parameters from 1684 reflections |
Hall symbol: P 65 2 ( 0 | θ = 2.5–29.5° |
a = 9.3359 (3) Å | µ = 2.91 mm−1 |
c = 15.7497 (11) Å | T = 296 K |
V = 1188.82 (10) Å3 | Block, green |
Z = 6 | 0.22 × 0.20 × 0.17 mm |
F(000) = 960 |
Bruker APEXII CCD area-detector diffractometer | 708 independent reflections |
Radiation source: fine-focus sealed tube | 684 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ and ω scans | θmax = 29.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→11 |
Tmin = 0.567, Tmax = 0.638 | k = −8→11 |
6139 measured reflections | l = −18→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0284P)2 + 2.1868P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
708 reflections | Δρmax = 0.68 e Å−3 |
75 parameters | Δρmin = −0.39 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 235 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (3) |
LiNi(H2O)2[BP2O8]·H2O | Z = 6 |
Mr = 320.44 | Mo Kα radiation |
Hexagonal, P6522 | µ = 2.91 mm−1 |
a = 9.3359 (3) Å | T = 296 K |
c = 15.7497 (11) Å | 0.22 × 0.20 × 0.17 mm |
V = 1188.82 (10) Å3 |
Bruker APEXII CCD area-detector diffractometer | 708 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 684 reflections with I > 2σ(I) |
Tmin = 0.567, Tmax = 0.638 | Rint = 0.049 |
6139 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.065 | Δρmax = 0.68 e Å−3 |
S = 1.14 | Δρmin = −0.39 e Å−3 |
708 reflections | Absolute structure: Flack (1983), 235 Friedel pairs |
75 parameters | Absolute structure parameter: 0.01 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.55533 (4) | 0.44467 (4) | 0.0833 | 0.0098 (2) | |
P2 | 0.38859 (12) | 0.21675 (12) | 0.24795 (7) | 0.0093 (3) | |
O5 | 0.4156 (3) | 0.2355 (3) | 0.34570 (16) | 0.0108 (6) | |
O4 | 0.2137 (3) | 0.1899 (4) | 0.23106 (18) | 0.0129 (7) | |
O3 | 0.4865 (4) | 0.1970 (4) | 0.05090 (19) | 0.0214 (7) | |
O2 | 0.5200 (4) | 0.3782 (3) | 0.21028 (17) | 0.0142 (7) | |
O1 | 0.3853 (4) | 0.0644 (4) | 0.21452 (17) | 0.0151 (7) | |
O6 | 0.2044 (10) | 0.1022 (5) | −0.0833 | 0.079 (2) | |
B | 0.3037 (8) | 0.1518 (4) | 0.4167 | 0.0090 (13) | |
Li | 0.466 (3) | 0.2331 (13) | −0.0833 | 0.080 (5) | |
H3A | 0.5738 | 0.2196 | 0.0284 | 0.096* | |
H6 | 0.1509 | 0.0382 | −0.1223 | 0.096* | |
H3B | 0.4428 | 0.1571 | 0.0973 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0098 (3) | 0.0098 (3) | 0.0100 (3) | 0.0050 (3) | 0.0013 (3) | 0.0013 (3) |
P2 | 0.0097 (5) | 0.0097 (5) | 0.0086 (5) | 0.0050 (4) | 0.0015 (4) | 0.0015 (4) |
O5 | 0.0095 (14) | 0.0126 (16) | 0.0089 (13) | 0.0044 (12) | 0.0014 (11) | 0.0016 (11) |
O4 | 0.0131 (16) | 0.0132 (15) | 0.0157 (16) | 0.0091 (13) | −0.0022 (12) | −0.0030 (12) |
O3 | 0.0277 (18) | 0.0162 (18) | 0.0231 (17) | 0.0130 (14) | 0.0121 (14) | 0.0049 (14) |
O2 | 0.0143 (16) | 0.0134 (14) | 0.0101 (13) | 0.0032 (13) | 0.0021 (12) | 0.0040 (11) |
O1 | 0.0211 (17) | 0.0159 (16) | 0.0147 (14) | 0.0140 (14) | 0.0008 (14) | −0.0017 (12) |
O6 | 0.083 (6) | 0.061 (3) | 0.100 (6) | 0.042 (3) | 0.000 | −0.024 (4) |
B | 0.012 (3) | 0.009 (2) | 0.007 (3) | 0.0059 (15) | 0.000 | 0.001 (2) |
Li | 0.094 (15) | 0.089 (10) | 0.058 (10) | 0.047 (8) | 0.000 | 0.011 (10) |
Ni1—O1i | 2.048 (3) | O4—Bi | 1.471 (5) |
Ni1—O1ii | 2.048 (3) | O3—Li | 2.164 (4) |
Ni1—O2iii | 2.070 (3) | O2—Liiv | 2.113 (13) |
Ni1—O2 | 2.070 (3) | O1—Ni1v | 2.048 (3) |
Ni1—O3 | 2.130 (3) | O6—Li | 2.12 (2) |
Ni1—O3iii | 2.130 (3) | B—O5vi | 1.461 (5) |
Ni1—Li | 3.137 (5) | B—O4vii | 1.471 (5) |
Ni1—Liiv | 3.137 (5) | B—O4v | 1.471 (5) |
P2—O1 | 1.503 (3) | Li—O2iii | 2.113 (13) |
P2—O2 | 1.510 (3) | Li—O2viii | 2.113 (13) |
P2—O4 | 1.546 (3) | Li—O3ix | 2.164 (4) |
P2—O5 | 1.556 (3) | Li—Ni1viii | 3.137 (5) |
O5—B | 1.461 (5) | ||
O1i—Ni1—O1ii | 92.58 (18) | B—O5—P2 | 131.6 (3) |
O1i—Ni1—O2iii | 88.53 (11) | Bi—O4—P2 | 127.8 (3) |
O1ii—Ni1—O2iii | 101.19 (12) | Ni1—O3—Li | 93.87 (18) |
O1i—Ni1—O2 | 101.19 (12) | P2—O2—Ni1 | 127.36 (17) |
O1ii—Ni1—O2 | 88.53 (11) | P2—O2—Liiv | 129.2 (4) |
O2iii—Ni1—O2 | 166.00 (17) | Ni1—O2—Liiv | 97.1 (2) |
O1i—Ni1—O3 | 86.52 (13) | P2—O1—Ni1v | 140.72 (18) |
O1ii—Ni1—O3 | 177.55 (12) | O5vi—B—O5 | 103.4 (4) |
O2iii—Ni1—O3 | 81.08 (11) | O5vi—B—O4vii | 111.43 (15) |
O2—Ni1—O3 | 89.40 (11) | O5—B—O4vii | 114.16 (15) |
O1i—Ni1—O3iii | 177.55 (12) | O5vi—B—O4v | 114.16 (15) |
O1ii—Ni1—O3iii | 86.52 (13) | O5—B—O4v | 111.43 (16) |
O2iii—Ni1—O3iii | 89.40 (11) | O4vii—B—O4v | 102.6 (4) |
O2—Ni1—O3iii | 81.08 (11) | O2iii—Li—O2viii | 106.9 (9) |
O3—Ni1—O3iii | 94.47 (19) | O2iii—Li—O6 | 126.5 (5) |
O1i—Ni1—Li | 72.0 (4) | O2viii—Li—O6 | 126.5 (5) |
O1ii—Ni1—Li | 138.23 (8) | O2iii—Li—O3 | 79.3 (3) |
O2iii—Ni1—Li | 41.9 (3) | O2viii—Li—O3 | 95.5 (4) |
O2—Ni1—Li | 131.83 (17) | O6—Li—O3 | 94.3 (6) |
O3—Ni1—Li | 43.50 (9) | O2iii—Li—O3ix | 95.5 (4) |
O3iii—Ni1—Li | 107.3 (4) | O2viii—Li—O3ix | 79.3 (3) |
O1i—Ni1—Liiv | 138.23 (8) | O6—Li—O3ix | 94.3 (6) |
O1ii—Ni1—Liiv | 72.0 (4) | O3—Li—O3ix | 171.3 (11) |
O2iii—Ni1—Liiv | 131.83 (17) | O2iii—Li—Ni1 | 40.91 (9) |
O2—Ni1—Liiv | 41.9 (3) | O2viii—Li—Ni1 | 118.8 (6) |
O3—Ni1—Liiv | 107.3 (4) | O6—Li—Ni1 | 103.3 (4) |
O3iii—Ni1—Liiv | 43.50 (9) | O3—Li—Ni1 | 42.64 (13) |
Li—Ni1—Liiv | 143.2 (5) | O3ix—Li—Ni1 | 134.5 (3) |
O1—P2—O2 | 115.38 (17) | O2iii—Li—Ni1viii | 118.8 (6) |
O1—P2—O4 | 105.45 (17) | O2viii—Li—Ni1viii | 40.91 (9) |
O2—P2—O4 | 111.07 (18) | O6—Li—Ni1viii | 103.3 (4) |
O1—P2—O5 | 112.24 (16) | O3—Li—Ni1viii | 134.5 (4) |
O2—P2—O5 | 105.75 (16) | O3ix—Li—Ni1viii | 42.64 (13) |
O4—P2—O5 | 106.70 (15) | Ni1—Li—Ni1viii | 153.4 (7) |
Symmetry codes: (i) x−y, x, z−1/6; (ii) −x+1, −x+y+1, −z+1/3; (iii) −y+1, −x+1, −z+1/6; (iv) −x+y+1, −x+1, z+1/3; (v) y, −x+y, z+1/6; (vi) x, x−y, −z+5/6; (vii) y, x, −z+2/3; (viii) −y+1, x−y, z−1/3; (ix) x, x−y, −z−1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O5viii | 0.81 | 2.01 | 2.746 (4) | 151 |
O3—H3A···O2viii | 0.81 | 2.60 | 3.165 (4) | 128 |
O6—H6···O4x | 0.83 | 2.52 | 3.331 (4) | 167 |
O6—H6···O1x | 0.83 | 2.66 | 3.092 (4) | 114 |
O3—H3B···O1 | 0.83 | 2.00 | 2.810 (4) | 167 |
O3—H3B···O2 | 0.83 | 2.54 | 2.955 (4) | 112 |
Symmetry codes: (viii) −y+1, x−y, z−1/3; (x) x−y, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | LiNi(H2O)2[BP2O8]·H2O |
Mr | 320.44 |
Crystal system, space group | Hexagonal, P6522 |
Temperature (K) | 296 |
a, c (Å) | 9.3359 (3), 15.7497 (11) |
V (Å3) | 1188.82 (10) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 2.91 |
Crystal size (mm) | 0.22 × 0.20 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.567, 0.638 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6139, 708, 684 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.065, 1.14 |
No. of reflections | 708 |
No. of parameters | 75 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.39 |
Absolute structure | Flack (1983), 235 Friedel pairs |
Absolute structure parameter | 0.01 (3) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—O1i | 2.048 (3) | P2—O5 | 1.556 (3) |
Ni1—O2 | 2.070 (3) | O6—Li | 2.12 (2) |
Ni1—O3 | 2.130 (3) | B—O5ii | 1.461 (5) |
P2—O1 | 1.503 (3) | B—O4iii | 1.471 (5) |
P2—O2 | 1.510 (3) | Li—O2iv | 2.113 (13) |
P2—O4 | 1.546 (3) | Li—O3v | 2.164 (4) |
Symmetry codes: (i) −x+1, −x+y+1, −z+1/3; (ii) x, x−y, −z+5/6; (iii) y, x, −z+2/3; (iv) −y+1, x−y, z−1/3; (v) x, x−y, −z−1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O5iv | 0.81 | 2.01 | 2.746 (4) | 150.7 |
O3—H3A···O2iv | 0.81 | 2.60 | 3.165 (4) | 128.2 |
O6—H6···O4vi | 0.83 | 2.52 | 3.331 (4) | 166.7 |
O6—H6···O1vi | 0.83 | 2.66 | 3.092 (4) | 114.3 |
O3—H3B···O1 | 0.83 | 2.00 | 2.810 (4) | 167.3 |
O3—H3B···O2 | 0.83 | 2.54 | 2.955 (4) | 112.1 |
Symmetry codes: (iv) −y+1, x−y, z−1/3; (vi) x−y, −y, −z. |
Acknowledgements
This work was supported by the Main Teacher Project of Hena Province (grant No. 649082) and the Foundation of Graduate Produce (reference 2008-M-17).
References
Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9–10. CAS Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930–2934. Web of Science CrossRef CAS Google Scholar
Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
With increasing interest in microporous materials, the synthesis of compounds like borophosphates with open framework structures have drawn much attention during the past few years. These compounds show a rich crystal chemistry (Kniep et al., 1998; Ewald et al., 2007).
The crystal structure of LiNi(H2O)2[BP2O8].H2O is isotypic with that of the Mg analogue (Lin et al. 2008) and contains an infinite one-dimensional anionic structure. The condensation of BO4 and PO4 tetrahedra leads to helical ribbons with composition [BP2O8]3- (Fig. 1), whereby each BO4 tetrahedron shares its vertices with four PO4 tetrahedra. Bond lenghts and angles within the anionic structure are consistent with related borophosphates (Boy & Kniep, 2001; Lin et al., 2008).
The free loop of the borophosphate helix is occupied by Li+ cations, which are coordinated by with five O atoms, two from phosphate groups (O2) and three from water molecules (O3), thus completing an helical unit {Li[BP2O8]2-} with a central channel running along the 65 screw axis. The channels are filled up with water of crystallization (O6). The Ni2+ cations, located on a twofold rotation axis, are surrounded in a distorted octahedral coordination by four O atoms from adjacent phosphate groups and two water molecules, leading to the overall formula LiNi(H2O)2[BP2O8].H2O (Fig. 2). The Ni—O distances range from 2.048 (3)–2.130 (3) Å and are in the usual range. The crystal structure is stabilized by O—H···O hydrogen bonds between coordinated or uncoordinated water molecules and O atoms that are part of the helices.