inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium di­aqua­nickel(II) catena-borodiphosphate(V) monohydrate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: zay@hpu.edu.cn

(Received 22 March 2009; accepted 20 April 2009; online 7 May 2009)

The title borophosphate LiNi(H2O)2[BP2O8]·H2O was synthesized under hydro­thermal conditions. The crystal structure is isotypic with the Mg analogue and features helical [BP2O8]3− borophosphate ribbons, constructed by BO4 (2 symmetry) and PO4 tetra­hedra. The borate groups share all their oxygen apices with adjacent phosphate tetra­hedra. The ribbons are connected via Ni2+ cations that are located on twofold rotation axes. The cations have a slightly distorted octa­hedral oxygen coordination by four O atoms from the anion and by two water mol­ecules. The voids within the helices are occupied by Li+ cations, likewise located on twofold rotation axes, in an irregular environment of five O atoms. The structure is stabilized by O—H⋯O hydrogen bonds between coordinated or uncoordinated water mol­ecules and O atoms that are part of the helices.

Related literature

For the isotypic Mg analogue, see: Lin et al. (2008[Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39-i40.]). For other borophosphates, see: Boy & Kniep (2001[Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9-10.]); Kniep et al. (1998[Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930-2934.]). A review on the structural chemistry of borophosphates is given by Ewald et al. (2007[Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540.]).

Experimental

Crystal data
  • LiNi(H2O)2[BP2O8]·H2O

  • Mr = 320.44

  • Hexagonal, P 65 22

  • a = 9.3359 (3) Å

  • c = 15.7497 (11) Å

  • V = 1188.82 (10) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.567, Tmax = 0.638

  • 6139 measured reflections

  • 708 independent reflections

  • 684 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.14

  • 708 reflections

  • 75 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 235 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Selected bond lengths (Å)

Ni1—O1i 2.048 (3)
Ni1—O2 2.070 (3)
Ni1—O3 2.130 (3)
P2—O1 1.503 (3)
P2—O2 1.510 (3)
P2—O4 1.546 (3)
P2—O5 1.556 (3)
O6—Li 2.12 (2)
B—O5ii 1.461 (5)
B—O4iii 1.471 (5)
Li—O2iv 2.113 (13)
Li—O3v 2.164 (4)
Symmetry codes: (i) [-x+1, -x+y+1, -z+{\script{1\over 3}}]; (ii) [x, x-y, -z+{\script{5\over 6}}]; (iii) [y, x, -z+{\script{2\over 3}}]; (iv) [-y+1, x-y, z-{\script{1\over 3}}]; (v) [x, x-y, -z-{\script{1\over 6}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5iv 0.81 2.01 2.746 (4) 151
O3—H3A⋯O2iv 0.81 2.60 3.165 (4) 128
O6—H6⋯O4vi 0.83 2.52 3.331 (4) 167
O6—H6⋯O1vi 0.83 2.66 3.092 (4) 114
O3—H3B⋯O1 0.83 2.00 2.810 (4) 167
O3—H3B⋯O2 0.83 2.54 2.955 (4) 112
Symmetry codes: (iv) [-y+1, x-y, z-{\script{1\over 3}}]; (vi) x-y, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

With increasing interest in microporous materials, the synthesis of compounds like borophosphates with open framework structures have drawn much attention during the past few years. These compounds show a rich crystal chemistry (Kniep et al., 1998; Ewald et al., 2007).

The crystal structure of LiNi(H2O)2[BP2O8].H2O is isotypic with that of the Mg analogue (Lin et al. 2008) and contains an infinite one-dimensional anionic structure. The condensation of BO4 and PO4 tetrahedra leads to helical ribbons with composition [BP2O8]3- (Fig. 1), whereby each BO4 tetrahedron shares its vertices with four PO4 tetrahedra. Bond lenghts and angles within the anionic structure are consistent with related borophosphates (Boy & Kniep, 2001; Lin et al., 2008).

The free loop of the borophosphate helix is occupied by Li+ cations, which are coordinated by with five O atoms, two from phosphate groups (O2) and three from water molecules (O3), thus completing an helical unit {Li[BP2O8]2-} with a central channel running along the 65 screw axis. The channels are filled up with water of crystallization (O6). The Ni2+ cations, located on a twofold rotation axis, are surrounded in a distorted octahedral coordination by four O atoms from adjacent phosphate groups and two water molecules, leading to the overall formula LiNi(H2O)2[BP2O8].H2O (Fig. 2). The Ni—O distances range from 2.048 (3)–2.130 (3) Å and are in the usual range. The crystal structure is stabilized by O—H···O hydrogen bonds between coordinated or uncoordinated water molecules and O atoms that are part of the helices.

Related literature top

For the isotypic Mg analogue, see: Lin et al. (2008). For other borophosphates, see: Boy & Kniep (2001); Kniep et al. (1998). A review on the structural chemistry of borphosphates is given by Ewald et al. (2007).

Experimental top

Green block-shaped crystals were synthesized hydrothermally from a mixture of Ni(NO3)2, Li2B4O7, water and H3PO4. In a typical synthesis, 0.87 g Ni(NO3)2.6H2O was dissolved in a mixture of 5 mL water, 1.691 g Li2B4O7 and 2 ml H3PO4 (85%wt ) under constant stirring. Finally, the mixture was kept in a 30 ml Teflon-lined steel autoclave at 443 K for 6d. The autoclave was slowly cooled to room temperature.

Refinement top

The highest peak in the difference map is 1.29Å from atom H6, and the minimum peak is 0.48Å from atom P2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A part of the structure of LiNi(H2O)2[BP2O8].H2O with displacement ellipsoids drawn at the 50% the probability level. Symmetry codes: (i) 1 - y, 1 - x, 0.16667 - z; (ii) 1 - x, 1 - x + y, 0.33333 - z; (iii) x-y, x, -0.16667 + z; (iv) y, x, 0.66667 - z; (v) y, -x + y, 0.16667 + z; (vi) x, x-y, 0.83333 - z.
[Figure 2] Fig. 2. Polyhedral diagram for LiNi(H2O)2[BP2O8].H2O in projection along [001]. Colour code: purple P, orange B, blue Ni, red OW6 and green Li.
Lithium diaquanickel(II) catena-borodiphosphate(V) monohydrate top
Crystal data top
LiNi(H2O)2[BP2O8]·H2ODx = 2.686 Mg m3
Mr = 320.44Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522Cell parameters from 1684 reflections
Hall symbol: P 65 2 ( 0θ = 2.5–29.5°
a = 9.3359 (3) ŵ = 2.91 mm1
c = 15.7497 (11) ÅT = 296 K
V = 1188.82 (10) Å3Block, green
Z = 60.22 × 0.20 × 0.17 mm
F(000) = 960
Data collection top
Bruker APEXII CCD area-detector
diffractometer
708 independent reflections
Radiation source: fine-focus sealed tube684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 29.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1011
Tmin = 0.567, Tmax = 0.638k = 811
6139 measured reflectionsl = 1814
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0284P)2 + 2.1868P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
708 reflectionsΔρmax = 0.68 e Å3
75 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983), 235 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
LiNi(H2O)2[BP2O8]·H2OZ = 6
Mr = 320.44Mo Kα radiation
Hexagonal, P6522µ = 2.91 mm1
a = 9.3359 (3) ÅT = 296 K
c = 15.7497 (11) Å0.22 × 0.20 × 0.17 mm
V = 1188.82 (10) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
684 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.638Rint = 0.049
6139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.68 e Å3
S = 1.14Δρmin = 0.39 e Å3
708 reflectionsAbsolute structure: Flack (1983), 235 Friedel pairs
75 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.55533 (4)0.44467 (4)0.08330.0098 (2)
P20.38859 (12)0.21675 (12)0.24795 (7)0.0093 (3)
O50.4156 (3)0.2355 (3)0.34570 (16)0.0108 (6)
O40.2137 (3)0.1899 (4)0.23106 (18)0.0129 (7)
O30.4865 (4)0.1970 (4)0.05090 (19)0.0214 (7)
O20.5200 (4)0.3782 (3)0.21028 (17)0.0142 (7)
O10.3853 (4)0.0644 (4)0.21452 (17)0.0151 (7)
O60.2044 (10)0.1022 (5)0.08330.079 (2)
B0.3037 (8)0.1518 (4)0.41670.0090 (13)
Li0.466 (3)0.2331 (13)0.08330.080 (5)
H3A0.57380.21960.02840.096*
H60.15090.03820.12230.096*
H3B0.44280.15710.09730.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0098 (3)0.0098 (3)0.0100 (3)0.0050 (3)0.0013 (3)0.0013 (3)
P20.0097 (5)0.0097 (5)0.0086 (5)0.0050 (4)0.0015 (4)0.0015 (4)
O50.0095 (14)0.0126 (16)0.0089 (13)0.0044 (12)0.0014 (11)0.0016 (11)
O40.0131 (16)0.0132 (15)0.0157 (16)0.0091 (13)0.0022 (12)0.0030 (12)
O30.0277 (18)0.0162 (18)0.0231 (17)0.0130 (14)0.0121 (14)0.0049 (14)
O20.0143 (16)0.0134 (14)0.0101 (13)0.0032 (13)0.0021 (12)0.0040 (11)
O10.0211 (17)0.0159 (16)0.0147 (14)0.0140 (14)0.0008 (14)0.0017 (12)
O60.083 (6)0.061 (3)0.100 (6)0.042 (3)0.0000.024 (4)
B0.012 (3)0.009 (2)0.007 (3)0.0059 (15)0.0000.001 (2)
Li0.094 (15)0.089 (10)0.058 (10)0.047 (8)0.0000.011 (10)
Geometric parameters (Å, º) top
Ni1—O1i2.048 (3)O4—Bi1.471 (5)
Ni1—O1ii2.048 (3)O3—Li2.164 (4)
Ni1—O2iii2.070 (3)O2—Liiv2.113 (13)
Ni1—O22.070 (3)O1—Ni1v2.048 (3)
Ni1—O32.130 (3)O6—Li2.12 (2)
Ni1—O3iii2.130 (3)B—O5vi1.461 (5)
Ni1—Li3.137 (5)B—O4vii1.471 (5)
Ni1—Liiv3.137 (5)B—O4v1.471 (5)
P2—O11.503 (3)Li—O2iii2.113 (13)
P2—O21.510 (3)Li—O2viii2.113 (13)
P2—O41.546 (3)Li—O3ix2.164 (4)
P2—O51.556 (3)Li—Ni1viii3.137 (5)
O5—B1.461 (5)
O1i—Ni1—O1ii92.58 (18)B—O5—P2131.6 (3)
O1i—Ni1—O2iii88.53 (11)Bi—O4—P2127.8 (3)
O1ii—Ni1—O2iii101.19 (12)Ni1—O3—Li93.87 (18)
O1i—Ni1—O2101.19 (12)P2—O2—Ni1127.36 (17)
O1ii—Ni1—O288.53 (11)P2—O2—Liiv129.2 (4)
O2iii—Ni1—O2166.00 (17)Ni1—O2—Liiv97.1 (2)
O1i—Ni1—O386.52 (13)P2—O1—Ni1v140.72 (18)
O1ii—Ni1—O3177.55 (12)O5vi—B—O5103.4 (4)
O2iii—Ni1—O381.08 (11)O5vi—B—O4vii111.43 (15)
O2—Ni1—O389.40 (11)O5—B—O4vii114.16 (15)
O1i—Ni1—O3iii177.55 (12)O5vi—B—O4v114.16 (15)
O1ii—Ni1—O3iii86.52 (13)O5—B—O4v111.43 (16)
O2iii—Ni1—O3iii89.40 (11)O4vii—B—O4v102.6 (4)
O2—Ni1—O3iii81.08 (11)O2iii—Li—O2viii106.9 (9)
O3—Ni1—O3iii94.47 (19)O2iii—Li—O6126.5 (5)
O1i—Ni1—Li72.0 (4)O2viii—Li—O6126.5 (5)
O1ii—Ni1—Li138.23 (8)O2iii—Li—O379.3 (3)
O2iii—Ni1—Li41.9 (3)O2viii—Li—O395.5 (4)
O2—Ni1—Li131.83 (17)O6—Li—O394.3 (6)
O3—Ni1—Li43.50 (9)O2iii—Li—O3ix95.5 (4)
O3iii—Ni1—Li107.3 (4)O2viii—Li—O3ix79.3 (3)
O1i—Ni1—Liiv138.23 (8)O6—Li—O3ix94.3 (6)
O1ii—Ni1—Liiv72.0 (4)O3—Li—O3ix171.3 (11)
O2iii—Ni1—Liiv131.83 (17)O2iii—Li—Ni140.91 (9)
O2—Ni1—Liiv41.9 (3)O2viii—Li—Ni1118.8 (6)
O3—Ni1—Liiv107.3 (4)O6—Li—Ni1103.3 (4)
O3iii—Ni1—Liiv43.50 (9)O3—Li—Ni142.64 (13)
Li—Ni1—Liiv143.2 (5)O3ix—Li—Ni1134.5 (3)
O1—P2—O2115.38 (17)O2iii—Li—Ni1viii118.8 (6)
O1—P2—O4105.45 (17)O2viii—Li—Ni1viii40.91 (9)
O2—P2—O4111.07 (18)O6—Li—Ni1viii103.3 (4)
O1—P2—O5112.24 (16)O3—Li—Ni1viii134.5 (4)
O2—P2—O5105.75 (16)O3ix—Li—Ni1viii42.64 (13)
O4—P2—O5106.70 (15)Ni1—Li—Ni1viii153.4 (7)
Symmetry codes: (i) xy, x, z1/6; (ii) x+1, x+y+1, z+1/3; (iii) y+1, x+1, z+1/6; (iv) x+y+1, x+1, z+1/3; (v) y, x+y, z+1/6; (vi) x, xy, z+5/6; (vii) y, x, z+2/3; (viii) y+1, xy, z1/3; (ix) x, xy, z1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5viii0.812.012.746 (4)151
O3—H3A···O2viii0.812.603.165 (4)128
O6—H6···O4x0.832.523.331 (4)167
O6—H6···O1x0.832.663.092 (4)114
O3—H3B···O10.832.002.810 (4)167
O3—H3B···O20.832.542.955 (4)112
Symmetry codes: (viii) y+1, xy, z1/3; (x) xy, y, z.

Experimental details

Crystal data
Chemical formulaLiNi(H2O)2[BP2O8]·H2O
Mr320.44
Crystal system, space groupHexagonal, P6522
Temperature (K)296
a, c (Å)9.3359 (3), 15.7497 (11)
V3)1188.82 (10)
Z6
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.22 × 0.20 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.567, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
6139, 708, 684
Rint0.049
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.14
No. of reflections708
No. of parameters75
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.39
Absolute structureFlack (1983), 235 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O1i2.048 (3)P2—O51.556 (3)
Ni1—O22.070 (3)O6—Li2.12 (2)
Ni1—O32.130 (3)B—O5ii1.461 (5)
P2—O11.503 (3)B—O4iii1.471 (5)
P2—O21.510 (3)Li—O2iv2.113 (13)
P2—O41.546 (3)Li—O3v2.164 (4)
Symmetry codes: (i) x+1, x+y+1, z+1/3; (ii) x, xy, z+5/6; (iii) y, x, z+2/3; (iv) y+1, xy, z1/3; (v) x, xy, z1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5iv0.812.012.746 (4)150.7
O3—H3A···O2iv0.812.603.165 (4)128.2
O6—H6···O4vi0.832.523.331 (4)166.7
O6—H6···O1vi0.832.663.092 (4)114.3
O3—H3B···O10.832.002.810 (4)167.3
O3—H3B···O20.832.542.955 (4)112.1
Symmetry codes: (iv) y+1, xy, z1/3; (vi) xy, y, z.
 

Acknowledgements

This work was supported by the Main Teacher Project of Hena Province (grant No. 649082) and the Foundation of Graduate Produce (reference 2008-M-17).

References

First citationBoy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9–10.  CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEwald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930–2934.  Web of Science CrossRef CAS Google Scholar
First citationLin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds