inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pr5Si3N9

aDepartment Chemie und Biochemie, Ludwig-Maximilians-Universität München, Lehrstuhl für Anorganische Festkörperchemie, Butenandtstrasse 5–13, D-81377 München, Germany
*Correspondence e-mail: Wolfgang.Schnick@uni-muenchen.de

(Received 9 April 2009; accepted 4 May 2009; online 14 May 2009)

Single crystals of Pr5Si3N9, penta­praseodymium trisilicon nona­nitride, were obtained by the reaction of elemental praseo­dymium with silicon diimide in a radio-frequency furnace at 1873 K. The crystal structure consists of a chain-like Si—N substructure of corner-sharing SiN4 tetra­hedra. An additional Q1-type [SiN4] unit is attached to every second tetra­hedron directed alternately in opposite directions. The resulting branched chains inter­lock with each other, building up a three-dimensional structure. The central atoms of the Q1-type [SiN4] unit and of its attached tetra­hedron are situated on a mirror plane, as are two of the four crystallographically unique Pr3+ ions. The latter are coordinated by six to ten N atoms, with Pr—N distances similar to those of other rare earth nitridosilicates.

Related literature

For isotypic compounds Ln5Si3N9 (Ln = La, Ce), see: Schmolke et al. (2009[Schmolke, C., Bichler, D., Johrendt, D. & Schnick, W. (2009). Solid State Sci. 11, 389-394.]). For experimental details, see: Schnick & Huppertz (1997[Schnick, W. & Huppertz, H. (1997). Chem. Eur. J. 3, 679-683.]); Schnick et al. (1999[Schnick, W., Huppertz, H. & Lauterbach, R. (1999). J. Mater. Chem. 9, 289-296.]). Typical atomic distances for rare earth nitridosilicates have been reported by Schnick (2001[Schnick, W. (2001). Int. J. Inorg. Mater. 3, 1267-1272.]) and Lissner & Schleid (2004[Lissner, F. & Schleid, T. (2004). Z. Anorg. Allg. Chem. 630, 2226-2230.]).

Experimental

Crystal data
  • Pr5Si3N9

  • Mr = 914.91

  • Orthorhombic, C m c e

  • a = 10.512 (2) Å

  • b = 11.243 (2) Å

  • c = 15.773 (3) Å

  • V = 1864.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 26.01 mm−1

  • T = 293 K

  • 0.17 × 0.10 × 0.08 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (XPREP; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.040, Tmax = 0.125

  • 9626 measured reflections

  • 1480 independent reflections

  • 1133 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 0.97

  • 1480 reflections

  • 90 parameters

  • Δρmax = 2.10 e Å−3

  • Δρmin = −2.31 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a branched chain-like nitridosilicate isotypic to Ln5Si3N9 (Ln = La, Ce) described by Schmolke et al. (2009). Except for Ln5Si3N9 (Ln = La, Ce, Pr), no other chain-like nitridosilicates have been observed so far. The single chains in Pr5Si3N9 run along [100] and are built up of corner sharing [SiN4] tetrahedra, whereas every second tetrahedron is additionally connected to a Q1-type tetrahedron. These direct alternately in opposing directions (Fig. 1). Thereby the Si2 and Si3 atoms are located on a mirrow plane which is co-planar to [100]. Due to the constitution of the terminal tetrahedra the chains interlock zipper-like with each other (Fig. 2). The Pr3+ ions (yellow) are located between the chains. The coordination numbers of the Pr3+ ions range between six (for Pr4) and ten (for Pr 3) with Pr—N distances varying from 2.310 (11) to 3.053 (2) Å. The geometric parameters of Pr5Si3N9 are in the usual ranges and correspond with those of the isotypic compounds Ln5Si3N9 (Ln = La, Ce) and other nitridosilicates (Schnick, 2001; Lissner & Schleid, 2004).

Related literature top

For isotypic compounds Ln5Si3N9 (Ln = La, Ce), see: Schmolke et al. (2009). For experimental details, see: Schnick & Huppertz (1997); Schnick et al. (1999). Typical atomic distances for rare earth nitridosilicates have been reported by Schnick (2001) and Lissner & Schleid (2004).

Experimental top

Pr5Si3N9 was synthesized by the reaction of Pr (swarf, 99.9%, Chempur, Karlsruhe) and silicon diimide (Schnick & Huppertz, 1997) which were thoroughly mixed in a glove box (Unilab, MBraun). The mixture was heated in a tungsten crucible in a radio-frequency furnace (Schnick et al., 1999) under purified N2 up to 1873 K within 1 h. This temperature was retained for 5 h, and the crucible thereafter cooled down to 1073 K in 35 h before quenching to room temperature within 1 h. Pr5Si3N9 could be obtained as air-sensitive dark-yellow crystals with PrN as by-product.

Refinement top

In the final Fourier map the highest peak is 0.19 Å from atom Si1 and the deepest hole is 0.64 Å from atom Pr4.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Presentation of the Si—N substructure, with anisotropic displacement parameters drawn at the 50% probability level. SiO4 tetrahedra are depicted purple for Si1, light blue for Si2 and dark blue for Si3.
[Figure 2] Fig. 2. View along [010] illustrating the resulting three-dimensional structure. Pr3+ ions are depicted yellow, with anisotropic displacement parameters drawn at the 50% probability level.
Pentapraseodymiumtrisiliconnonanitride top
Crystal data top
Pr5Si3N9F(000) = 3200
Mr = 914.91Dx = 6.520 Mg m3
Orthorhombic, CmceMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 bc 2Cell parameters from 5699 reflections
a = 10.512 (2) Åθ = 2.6–30.5°
b = 11.243 (2) ŵ = 26.01 mm1
c = 15.773 (3) ÅT = 293 K
V = 1864.2 (6) Å3Block, yellow
Z = 80.17 × 0.10 × 0.08 mm
Data collection top
Stoe IPDS
diffractometer
1480 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(XPREP; Sheldrick, 2008)
h = 1214
Tmin = 0.040, Tmax = 0.125k = 1515
9626 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 0.97Δρmax = 2.10 e Å3
1480 reflectionsΔρmin = 2.31 e Å3
90 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00090 (6)
Crystal data top
Pr5Si3N9V = 1864.2 (6) Å3
Mr = 914.91Z = 8
Orthorhombic, CmceMo Kα radiation
a = 10.512 (2) ŵ = 26.01 mm1
b = 11.243 (2) ÅT = 293 K
c = 15.773 (3) Å0.17 × 0.10 × 0.08 mm
Data collection top
Stoe IPDS
diffractometer
1480 independent reflections
Absorption correction: multi-scan
(XPREP; Sheldrick, 2008)
1133 reflections with I > 2σ(I)
Tmin = 0.040, Tmax = 0.125Rint = 0.080
9626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03790 parameters
wR(F2) = 0.0970 restraints
S = 0.97Δρmax = 2.10 e Å3
1480 reflectionsΔρmin = 2.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.00000.01304 (6)0.33611 (4)0.01605 (18)
Pr20.21211 (5)0.25683 (4)0.37015 (3)0.01847 (17)
Pr30.00000.00567 (6)0.11240 (4)0.01844 (19)
Pr40.20546 (7)0.00000.50000.01756 (19)
Si10.00000.2598 (3)0.5166 (2)0.0148 (6)
Si20.00000.2724 (3)0.2739 (2)0.0148 (6)
Si30.25000.0361 (3)0.25000.0146 (6)
N10.00000.1552 (10)0.2035 (7)0.020 (2)
N20.00000.2233 (10)0.3761 (6)0.024 (2)
N30.1254 (8)0.1348 (7)0.2416 (5)0.0201 (14)
N40.2371 (7)0.0349 (7)0.3472 (5)0.0176 (13)
N50.1321 (8)0.3528 (8)0.5006 (5)0.0226 (15)
N60.00000.1350 (10)0.4519 (7)0.022 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.0137 (3)0.0145 (3)0.0199 (3)0.0000.0000.0005 (2)
Pr20.0190 (3)0.0167 (3)0.0197 (3)0.00032 (16)0.00156 (15)0.00234 (15)
Pr30.0220 (4)0.0160 (3)0.0173 (3)0.0000.0000.0013 (2)
Pr40.0173 (4)0.0177 (3)0.0177 (3)0.0000.0000.0001 (2)
Si10.0176 (16)0.0136 (13)0.0133 (12)0.0000.0000.0007 (10)
Si20.0120 (15)0.0141 (14)0.0184 (14)0.0000.0000.0014 (10)
Si30.0113 (14)0.0164 (14)0.0160 (14)0.0000.0011 (10)0.000
N10.020 (6)0.019 (4)0.022 (5)0.0000.0000.005 (4)
N20.041 (7)0.018 (5)0.012 (4)0.0000.0000.002 (3)
N30.013 (3)0.020 (3)0.027 (4)0.001 (3)0.004 (3)0.003 (3)
N40.013 (3)0.024 (3)0.016 (3)0.005 (3)0.001 (2)0.001 (3)
N50.019 (4)0.024 (4)0.024 (3)0.004 (3)0.007 (3)0.005 (3)
N60.018 (6)0.024 (5)0.024 (5)0.0000.0000.001 (4)
Geometric parameters (Å, º) top
Pr1—N22.446 (12)Pr4—Pr2xii3.5243 (7)
Pr1—N3i2.593 (8)Pr4—Pr2i3.5408 (7)
Pr1—N32.593 (8)Pr4—Pr2xv3.5408 (7)
Pr1—N62.471 (12)Si1—N61.735 (12)
Pr1—N42.511 (8)Si1—N2xv1.742 (10)
Pr1—N4i2.511 (8)Si1—N51.756 (8)
Pr1—N12.633 (11)Si1—N5i1.756 (8)
Pr1—Si33.0093 (8)Si1—Pr3xvi3.039 (3)
Pr1—Si3ii3.0093 (8)Si1—Pr2i3.211 (2)
Pr1—Si23.077 (3)Si1—Pr3iii3.432 (3)
Pr1—Si2iii3.214 (3)Si2—N21.704 (11)
Pr1—Pr43.3717 (8)Si2—N11.723 (11)
Pr2—N3i2.613 (8)Si2—N3ix1.699 (8)
Pr2—N4iv2.429 (8)Si2—N3x1.699 (8)
Pr2—N52.470 (8)Si2—Pr3ix3.073 (3)
Pr2—N1iii2.702 (6)Si2—Pr2ix3.200 (2)
Pr2—N5v2.891 (9)Si2—Pr2x3.200 (2)
Pr2—N62.917 (8)Si2—Pr1ix3.214 (3)
Pr2—N3vi2.812 (8)Si2—Pr2xiii3.4018 (16)
Pr2—Si33.148 (3)Si2—Pr2xvii3.4018 (16)
Pr2—Si2iii3.200 (2)Si3—N3vi1.722 (8)
Pr2—Si13.211 (2)Si3—N3i1.722 (8)
Pr2—Si2iv3.4018 (16)Si3—N4vi1.733 (7)
Pr2—Pr4iv3.5243 (7)Si3—N4i1.733 (7)
Pr3—N12.310 (11)Si3—Pr1vi3.0093 (8)
Pr3—N5vii2.752 (8)Si3—Pr2xviii3.148 (3)
Pr3—N5viii2.752 (8)Si3—Pr3vi3.4254 (7)
Pr3—N5ix2.839 (9)N1—Pr2ix2.702 (6)
Pr3—N5x2.839 (9)N1—Pr2x2.702 (6)
Pr3—N4xi2.873 (8)N2—Si1xv1.742 (10)
Pr3—N4vi2.873 (8)N3—Si3ii1.722 (8)
Pr3—Si1viii3.039 (3)N3—Si2iii1.699 (8)
Pr3—Si2iii3.073 (3)N3—Pr2i2.613 (8)
Pr3—Si3ii3.4254 (7)N3—Pr2ii2.812 (8)
Pr3—Si33.4254 (7)N4—Si3ii1.733 (7)
Pr3—Si1ix3.432 (3)N4—Pr2xiii2.429 (8)
Pr4—N5xii2.378 (8)N4—Pr3ii2.873 (8)
Pr4—N5xiii2.378 (8)N5—Pr4iv2.378 (8)
Pr4—N42.465 (7)N5—Pr3xvi2.752 (8)
Pr4—N4xiv2.465 (7)N5—Pr3iii2.839 (9)
Pr4—N62.747 (7)N5—Pr2v2.891 (9)
Pr4—N6xv2.747 (7)N6—Pr4xv2.747 (7)
Pr4—Pr1xv3.3717 (8)N6—Pr2i2.917 (8)
Pr4—Pr2xiii3.5243 (7)
N2—Pr1—N3i140.1 (2)N4—Pr4—Pr2xiii43.52 (18)
N2—Pr1—N3140.1 (2)N4xiv—Pr4—Pr2xiii131.21 (19)
N3i—Pr1—N361.1 (4)N6—Pr4—Pr2xiii117.5 (2)
N2—Pr1—N6117.4 (4)N6xv—Pr4—Pr2xiii85.7 (2)
N3i—Pr1—N689.6 (3)Pr1—Pr4—Pr2xiii71.228 (16)
N3—Pr1—N689.6 (3)Pr1xv—Pr4—Pr2xiii129.553 (18)
N2—Pr1—N483.53 (18)N5xii—Pr4—Pr2xii44.41 (19)
N3i—Pr1—N4127.4 (3)N5xiii—Pr4—Pr2xii111.17 (19)
N3—Pr1—N466.3 (3)N4—Pr4—Pr2xii131.21 (19)
N6—Pr1—N490.85 (18)N4xiv—Pr4—Pr2xii43.52 (18)
N2—Pr1—N4i83.53 (18)N6—Pr4—Pr2xii85.7 (2)
N3i—Pr1—N4i66.3 (3)N6xv—Pr4—Pr2xii117.5 (2)
N3—Pr1—N4i127.4 (3)Pr1—Pr4—Pr2xii129.553 (18)
N6—Pr1—N4i90.85 (18)Pr1xv—Pr4—Pr2xii71.228 (16)
N4—Pr1—N4i166.2 (3)Pr2xiii—Pr4—Pr2xii151.53 (3)
N2—Pr1—N167.5 (3)N5xii—Pr4—Pr2i54.3 (2)
N3i—Pr1—N186.1 (3)N5xiii—Pr4—Pr2i123.7 (2)
N3—Pr1—N186.1 (3)N4—Pr4—Pr2i64.00 (18)
N6—Pr1—N1175.0 (4)N4xiv—Pr4—Pr2i115.66 (18)
N4—Pr1—N189.75 (17)N6—Pr4—Pr2i53.49 (19)
N4i—Pr1—N189.75 (17)N6xv—Pr4—Pr2i128.75 (19)
N2—Pr1—Si3107.07 (11)Pr1—Pr4—Pr2i66.712 (16)
N3i—Pr1—Si334.80 (19)Pr1xv—Pr4—Pr2i114.875 (19)
N3—Pr1—Si393.83 (19)Pr2xiii—Pr4—Pr2i106.955 (19)
N6—Pr1—Si3102.12 (13)Pr2xii—Pr4—Pr2i72.463 (19)
N4—Pr1—Si3156.38 (16)N5xii—Pr4—Pr2xv123.7 (2)
N4i—Pr1—Si335.15 (17)N5xiii—Pr4—Pr2xv54.3 (2)
N1—Pr1—Si375.69 (11)N4—Pr4—Pr2xv115.66 (18)
N2—Pr1—Si3ii107.07 (11)N4xiv—Pr4—Pr2xv64.00 (18)
N3i—Pr1—Si3ii93.83 (19)N6—Pr4—Pr2xv128.75 (19)
N3—Pr1—Si3ii34.80 (19)N6xv—Pr4—Pr2xv53.49 (19)
N6—Pr1—Si3ii102.12 (13)Pr1—Pr4—Pr2xv114.875 (19)
N4—Pr1—Si3ii35.15 (17)Pr1xv—Pr4—Pr2xv66.712 (16)
N4i—Pr1—Si3ii156.38 (16)Pr2xiii—Pr4—Pr2xv72.463 (19)
N1—Pr1—Si3ii75.69 (11)Pr2xii—Pr4—Pr2xv106.955 (19)
Si3—Pr1—Si3ii121.68 (5)Pr2i—Pr4—Pr2xv177.74 (3)
N2—Pr1—Si233.5 (2)N6—Si1—N2xv112.4 (6)
N3i—Pr1—Si2115.08 (18)N6—Si1—N5113.4 (3)
N3—Pr1—Si2115.08 (18)N2xv—Si1—N5106.3 (4)
N6—Pr1—Si2150.9 (3)N6—Si1—N5i113.4 (3)
N4—Pr1—Si285.94 (18)N2xv—Si1—N5i106.3 (4)
N4i—Pr1—Si285.94 (18)N5—Si1—N5i104.5 (6)
N1—Pr1—Si234.0 (2)N6—Si1—Pr3xvi173.8 (4)
Si3—Pr1—Si291.71 (7)N2xv—Si1—Pr3xvi73.8 (4)
Si3ii—Pr1—Si291.71 (7)N5—Si1—Pr3xvi63.6 (3)
N2—Pr1—Si2iii162.3 (2)N5i—Si1—Pr3xvi63.6 (3)
N3i—Pr1—Si2iii31.79 (18)N6—Si1—Pr264.4 (3)
N3—Pr1—Si2iii31.79 (18)N2xv—Si1—Pr2134.16 (11)
N6—Pr1—Si2iii80.3 (3)N5—Si1—Pr249.7 (3)
N4—Pr1—Si2iii96.89 (17)N5i—Si1—Pr2116.8 (3)
N4i—Pr1—Si2iii96.89 (17)Pr3xvi—Si1—Pr2111.53 (8)
N1—Pr1—Si2iii94.7 (2)N6—Si1—Pr2i64.4 (3)
Si3—Pr1—Si2iii66.54 (6)N2xv—Si1—Pr2i134.16 (11)
Si3ii—Pr1—Si2iii66.54 (6)N5—Si1—Pr2i116.8 (3)
Si2—Pr1—Si2iii128.72 (3)N5i—Si1—Pr2i49.7 (3)
N2—Pr1—Pr481.05 (18)Pr3xvi—Si1—Pr2i111.53 (8)
N3i—Pr1—Pr4137.62 (17)Pr2—Si1—Pr2i87.97 (8)
N3—Pr1—Pr495.02 (19)N6—Si1—Pr3iii107.6 (4)
N6—Pr1—Pr453.42 (16)N2xv—Si1—Pr3iii140.0 (4)
N4—Pr1—Pr446.78 (16)N5—Si1—Pr3iii55.6 (3)
N4i—Pr1—Pr4125.95 (16)N5i—Si1—Pr3iii55.6 (3)
N1—Pr1—Pr4129.46 (13)Pr3xvi—Si1—Pr3iii66.18 (7)
Si3—Pr1—Pr4153.83 (4)Pr2—Si1—Pr3iii65.29 (6)
Si3ii—Pr1—Pr477.212 (18)Pr2i—Si1—Pr3iii65.29 (6)
Si2—Pr1—Pr4106.60 (5)N2—Si2—N1111.2 (6)
Si2iii—Pr1—Pr4112.17 (4)N2—Si2—N3ix109.6 (4)
N3i—Pr2—N4iv117.8 (2)N1—Si2—N3ix112.2 (4)
N3i—Pr2—N5139.2 (3)N2—Si2—N3x109.6 (4)
N4iv—Pr2—N577.2 (3)N1—Si2—N3x112.2 (4)
N3i—Pr2—N1iii64.6 (3)N3ix—Si2—N3x101.8 (6)
N4iv—Pr2—N1iii76.4 (3)N2—Si2—Pr3ix73.2 (4)
N5—Pr2—N1iii85.3 (3)N1—Si2—Pr3ix175.6 (4)
N3i—Pr2—N5v121.4 (2)N3ix—Si2—Pr3ix65.5 (3)
N4iv—Pr2—N5v113.1 (2)N3x—Si2—Pr3ix65.5 (3)
N5—Pr2—N5v78.0 (3)N2—Si2—Pr152.5 (4)
N1iii—Pr2—N5v157.9 (3)N1—Si2—Pr158.7 (4)
N3i—Pr2—N680.2 (3)N3ix—Si2—Pr1128.9 (3)
N4iv—Pr2—N6133.4 (3)N3x—Si2—Pr1128.9 (3)
N5—Pr2—N665.0 (3)Pr3ix—Si2—Pr1125.69 (11)
N1iii—Pr2—N674.4 (3)N2—Si2—Pr2ix129.66 (18)
N5v—Pr2—N685.5 (2)N1—Si2—Pr2ix57.6 (2)
N3i—Pr2—N3vi57.9 (3)N3ix—Si2—Pr2ix120.1 (3)
N4iv—Pr2—N3vi104.1 (2)N3x—Si2—Pr2ix54.6 (3)
N5—Pr2—N3vi160.4 (3)Pr3ix—Si2—Pr2ix119.86 (7)
N1iii—Pr2—N3vi114.2 (3)Pr1—Si2—Pr2ix97.41 (8)
N5v—Pr2—N3vi83.7 (2)N2—Si2—Pr2x129.66 (18)
N6—Pr2—N3vi120.8 (3)N1—Si2—Pr2x57.6 (2)
N3i—Pr2—Si333.16 (18)N3ix—Si2—Pr2x54.6 (3)
N4iv—Pr2—Si3129.97 (18)N3x—Si2—Pr2x120.1 (3)
N5—Pr2—Si3152.7 (2)Pr3ix—Si2—Pr2x119.86 (7)
N1iii—Pr2—Si397.7 (2)Pr1—Si2—Pr2x97.41 (8)
N5v—Pr2—Si390.97 (16)Pr2ix—Si2—Pr2x88.33 (8)
N6—Pr2—Si389.6 (2)N2—Si2—Pr1ix141.6 (4)
N3vi—Pr2—Si332.97 (16)N1—Si2—Pr1ix107.2 (4)
N3i—Pr2—Si2iii32.00 (18)N3ix—Si2—Pr1ix53.5 (3)
N4iv—Pr2—Si2iii98.41 (18)N3x—Si2—Pr1ix53.5 (3)
N5—Pr2—Si2iii113.5 (2)Pr3ix—Si2—Pr1ix68.39 (7)
N1iii—Pr2—Si2iii32.6 (2)Pr1—Si2—Pr1ix165.93 (11)
N5v—Pr2—Si2iii148.38 (18)Pr2ix—Si2—Pr1ix72.74 (6)
N6—Pr2—Si2iii74.5 (2)Pr2x—Si2—Pr1ix72.74 (6)
N3vi—Pr2—Si2iii85.88 (18)N2—Si2—Pr2xiii63.03 (5)
Si3—Pr2—Si2iii65.15 (5)N1—Si2—Pr2xiii102.34 (17)
N3i—Pr2—Si1108.77 (18)N3ix—Si2—Pr2xiii55.5 (3)
N4iv—Pr2—Si1104.47 (19)N3x—Si2—Pr2xiii144.5 (3)
N5—Pr2—Si132.8 (2)Pr3ix—Si2—Pr2xiii79.51 (6)
N1iii—Pr2—Si174.5 (2)Pr1—Si2—Pr2xiii76.47 (6)
N5v—Pr2—Si183.71 (16)Pr2ix—Si2—Pr2xiii157.94 (9)
N6—Pr2—Si132.5 (2)Pr2x—Si2—Pr2xiii71.77 (2)
N3vi—Pr2—Si1151.39 (17)Pr1ix—Si2—Pr2xiii108.81 (6)
Si3—Pr2—Si1121.96 (6)N2—Si2—Pr2xvii63.03 (5)
Si2iii—Pr2—Si191.60 (6)N1—Si2—Pr2xvii102.34 (17)
N3i—Pr2—Si2iv85.02 (18)N3ix—Si2—Pr2xvii144.5 (3)
N4iv—Pr2—Si2iv80.27 (19)N3x—Si2—Pr2xvii55.5 (3)
N5—Pr2—Si2iv135.8 (2)Pr3ix—Si2—Pr2xvii79.51 (6)
N1iii—Pr2—Si2iv125.3 (2)Pr1—Si2—Pr2xvii76.47 (6)
N5v—Pr2—Si2iv76.68 (16)Pr2ix—Si2—Pr2xvii71.77 (2)
N6—Pr2—Si2iv146.3 (2)Pr2x—Si2—Pr2xvii157.94 (9)
N3vi—Pr2—Si2iv29.85 (17)Pr1ix—Si2—Pr2xvii108.81 (6)
Si3—Pr2—Si2iv62.78 (6)Pr2xiii—Si2—Pr2xvii125.65 (10)
Si2iii—Pr2—Si2iv107.04 (3)N3vi—Si3—N3i99.8 (6)
Si1—Pr2—Si2iv160.04 (7)N3vi—Si3—N4vi107.8 (4)
N3i—Pr2—Pr4iv160.79 (17)N3i—Si3—N4vi106.7 (4)
N4iv—Pr2—Pr4iv44.35 (17)N3vi—Si3—N4i106.7 (4)
N5—Pr2—Pr4iv42.36 (19)N3i—Si3—N4i107.8 (4)
N1iii—Pr2—Pr4iv99.7 (2)N4vi—Si3—N4i125.2 (5)
N5v—Pr2—Pr4iv77.38 (17)N3vi—Si3—Pr1138.4 (3)
N6—Pr2—Pr4iv107.2 (2)N3i—Si3—Pr159.3 (3)
N3vi—Pr2—Pr4iv126.40 (17)N4vi—Si3—Pr1112.5 (3)
Si3—Pr2—Pr4iv158.49 (2)N4i—Si3—Pr156.5 (3)
Si2iii—Pr2—Pr4iv131.58 (6)N3vi—Si3—Pr1vi59.3 (3)
Si1—Pr2—Pr4iv75.19 (5)N3i—Si3—Pr1vi138.4 (3)
Si2iv—Pr2—Pr4iv96.64 (5)N4vi—Si3—Pr1vi56.5 (3)
N1—Pr3—N5vii148.38 (19)N4i—Si3—Pr1vi112.5 (3)
N1—Pr3—N5viii148.38 (19)Pr1—Si3—Pr1vi158.86 (12)
N5vii—Pr3—N5viii60.6 (3)N3vi—Si3—Pr2xviii56.1 (3)
N1—Pr3—N5ix85.2 (3)N3i—Si3—Pr2xviii62.7 (3)
N5vii—Pr3—N5ix72.6 (3)N4vi—Si3—Pr2xviii79.7 (3)
N5viii—Pr3—N5ix101.2 (2)N4i—Si3—Pr2xviii154.9 (3)
N1—Pr3—N5x85.2 (3)Pr1—Si3—Pr2xviii121.79 (7)
N5vii—Pr3—N5x101.2 (2)Pr1vi—Si3—Pr2xviii76.26 (3)
N5viii—Pr3—N5x72.6 (3)N3vi—Si3—Pr262.7 (3)
N5ix—Pr3—N5x58.6 (3)N3i—Si3—Pr256.1 (3)
N1—Pr3—N4xi74.78 (15)N4vi—Si3—Pr2154.9 (3)
N5vii—Pr3—N4xi136.0 (2)N4i—Si3—Pr279.7 (3)
N5viii—Pr3—N4xi75.5 (2)Pr1—Si3—Pr276.26 (3)
N5ix—Pr3—N4xi120.9 (2)Pr1vi—Si3—Pr2121.79 (7)
N5x—Pr3—N4xi64.7 (2)Pr2xviii—Si3—Pr275.92 (8)
N1—Pr3—N4vi74.78 (15)N3vi—Si3—Pr3134.2 (3)
N5vii—Pr3—N4vi75.5 (2)N3i—Si3—Pr355.4 (3)
N5viii—Pr3—N4vi136.0 (2)N4vi—Si3—Pr356.9 (3)
N5ix—Pr3—N4vi64.7 (2)N4i—Si3—Pr3117.0 (3)
N5x—Pr3—N4vi120.9 (2)Pr1—Si3—Pr366.28 (2)
N4xi—Pr3—N4vi148.3 (3)Pr1vi—Si3—Pr3111.45 (3)
N1—Pr3—Si1viii171.4 (3)Pr2xviii—Si3—Pr378.13 (3)
N5vii—Pr3—Si1viii34.86 (17)Pr2—Si3—Pr3111.28 (6)
N5viii—Pr3—Si1viii34.86 (17)N3vi—Si3—Pr3vi55.4 (3)
N5ix—Pr3—Si1viii102.31 (17)N3i—Si3—Pr3vi134.2 (3)
N5x—Pr3—Si1viii102.31 (17)N4vi—Si3—Pr3vi117.0 (3)
N4xi—Pr3—Si1viii104.38 (15)N4i—Si3—Pr3vi56.9 (3)
N4vi—Pr3—Si1viii104.38 (15)Pr1—Si3—Pr3vi111.45 (3)
N1—Pr3—Si2iii105.8 (3)Pr1vi—Si3—Pr3vi66.28 (2)
N5vii—Pr3—Si2iii84.53 (19)Pr2xviii—Si3—Pr3vi111.28 (6)
N5viii—Pr3—Si2iii84.53 (19)Pr2—Si3—Pr3vi78.13 (3)
N5ix—Pr3—Si2iii149.10 (17)Pr3—Si3—Pr3vi168.55 (11)
N5x—Pr3—Si2iii149.10 (17)Si2—N1—Pr3178.3 (7)
N4xi—Pr3—Si2iii89.97 (15)Si2—N1—Pr187.3 (5)
N4vi—Pr3—Si2iii89.97 (15)Pr3—N1—Pr191.1 (4)
Si1viii—Pr3—Si2iii65.53 (9)Si2—N1—Pr2ix89.8 (3)
N1—Pr3—Si3ii71.58 (17)Pr3—N1—Pr2ix91.1 (3)
N5vii—Pr3—Si3ii137.36 (18)Pr1—N1—Pr2ix124.3 (2)
N5viii—Pr3—Si3ii87.79 (18)Si2—N1—Pr2x89.8 (3)
N5ix—Pr3—Si3ii146.45 (18)Pr3—N1—Pr2x91.1 (3)
N5x—Pr3—Si3ii94.75 (16)Pr1—N1—Pr2x124.3 (2)
N4xi—Pr3—Si3ii30.36 (15)Pr2ix—N1—Pr2x111.2 (4)
N4vi—Pr3—Si3ii127.82 (14)Si2—N2—Si1xv147.4 (8)
Si1viii—Pr3—Si3ii103.21 (6)Si2—N2—Pr194.0 (4)
Si2iii—Pr3—Si3ii63.20 (6)Si1xv—N2—Pr1118.6 (6)
N1—Pr3—Si371.58 (17)Si3ii—N3—Si2iii175.7 (6)
N5vii—Pr3—Si387.79 (18)Si3ii—N3—Pr2i90.7 (4)
N5viii—Pr3—Si3137.36 (18)Si2iii—N3—Pr2i93.4 (3)
N5ix—Pr3—Si394.75 (16)Si3ii—N3—Pr185.9 (3)
N5x—Pr3—Si3146.45 (18)Si2iii—N3—Pr194.7 (3)
N4xi—Pr3—Si3127.82 (14)Pr2i—N3—Pr193.9 (3)
N4vi—Pr3—Si330.36 (15)Si3ii—N3—Pr2ii84.3 (3)
Si1viii—Pr3—Si3103.21 (6)Si2iii—N3—Pr2ii94.7 (3)
Si2iii—Pr3—Si363.20 (6)Pr2i—N3—Pr2ii91.0 (2)
Si3ii—Pr3—Si3100.21 (3)Pr1—N3—Pr2ii169.1 (3)
N1—Pr3—Si1ix74.8 (3)Si3ii—N4—Pr2xiii124.0 (4)
N5vii—Pr3—Si1ix94.91 (19)Si3ii—N4—Pr4143.3 (4)
N5viii—Pr3—Si1ix94.91 (19)Pr2xiii—N4—Pr492.1 (2)
N5ix—Pr3—Si1ix30.70 (16)Si3ii—N4—Pr188.3 (3)
N5x—Pr3—Si1ix30.70 (16)Pr2xiii—N4—Pr1108.9 (3)
N4xi—Pr3—Si1ix90.21 (15)Pr4—N4—Pr185.3 (2)
N4vi—Pr3—Si1ix90.21 (15)Si3ii—N4—Pr3ii92.7 (3)
Si1viii—Pr3—Si1ix113.82 (7)Pr2xiii—N4—Pr3ii84.8 (2)
Si2iii—Pr3—Si1ix179.35 (8)Pr4—N4—Pr3ii83.5 (2)
Si3ii—Pr3—Si1ix117.13 (6)Pr1—N4—Pr3ii162.7 (3)
Si3—Pr3—Si1ix117.13 (6)Si1—N5—Pr4iv169.2 (5)
N5xii—Pr4—N5xiii88.2 (4)Si1—N5—Pr297.4 (4)
N5xii—Pr4—N490.6 (3)Pr4iv—N5—Pr293.2 (3)
N5xiii—Pr4—N478.2 (3)Si1—N5—Pr3xvi81.5 (3)
N5xii—Pr4—N4xiv78.2 (3)Pr4iv—N5—Pr3xvi87.8 (3)
N5xiii—Pr4—N4xiv90.6 (3)Pr2—N5—Pr3xvi163.4 (4)
N4—Pr4—N4xiv164.5 (4)Si1—N5—Pr3iii93.7 (4)
N5xii—Pr4—N6100.3 (3)Pr4iv—N5—Pr3iii85.8 (3)
N5xiii—Pr4—N6161.9 (3)Pr2—N5—Pr3iii84.7 (2)
N4—Pr4—N685.6 (3)Pr3xvi—N5—Pr3iii78.8 (2)
N4xiv—Pr4—N6106.7 (3)Si1—N5—Pr2v95.3 (4)
N5xii—Pr4—N6xv161.9 (3)Pr4iv—N5—Pr2v83.8 (3)
N5xiii—Pr4—N6xv100.3 (3)Pr2—N5—Pr2v102.0 (3)
N4—Pr4—N6xv106.7 (3)Pr3xvi—N5—Pr2v94.6 (2)
N4xiv—Pr4—N6xv85.6 (3)Pr3iii—N5—Pr2v167.9 (3)
N6—Pr4—N6xv76.3 (4)Si1—N6—Pr1168.4 (7)
N5xii—Pr4—Pr1119.2 (2)Si1—N6—Pr4106.5 (4)
N5xiii—Pr4—Pr1115.63 (19)Pr1—N6—Pr480.3 (3)
N4—Pr4—Pr147.91 (18)Si1—N6—Pr4xv106.5 (4)
N4xiv—Pr4—Pr1147.47 (18)Pr1—N6—Pr4xv80.3 (3)
N6—Pr4—Pr146.3 (2)Pr4—N6—Pr4xv103.7 (4)
N6xv—Pr4—Pr171.6 (2)Si1—N6—Pr283.1 (3)
N5xii—Pr4—Pr1xv115.63 (19)Pr1—N6—Pr289.4 (3)
N5xiii—Pr4—Pr1xv119.2 (2)Pr4—N6—Pr2169.3 (5)
N4—Pr4—Pr1xv147.47 (18)Pr4xv—N6—Pr277.32 (4)
N4xiv—Pr4—Pr1xv47.91 (18)Si1—N6—Pr2i83.1 (3)
N6—Pr4—Pr1xv71.6 (2)Pr1—N6—Pr2i89.4 (3)
N6xv—Pr4—Pr1xv46.3 (2)Pr4—N6—Pr2i77.32 (4)
Pr1—Pr4—Pr1xv100.33 (3)Pr4xv—N6—Pr2i169.3 (5)
N5xii—Pr4—Pr2xiii111.17 (19)Pr2—N6—Pr2i99.7 (3)
N5xiii—Pr4—Pr2xiii44.41 (19)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1/2, y1/2, z; (v) x1/2, y1/2, z+1; (vi) x1/2, y, z+1/2; (vii) x, y1/2, z1/2; (viii) x, y1/2, z1/2; (ix) x, y+1/2, z+1/2; (x) x, y+1/2, z+1/2; (xi) x+1/2, y, z+1/2; (xii) x+1/2, y1/2, z+1; (xiii) x+1/2, y+1/2, z; (xiv) x, y, z+1; (xv) x, y, z+1; (xvi) x, y1/2, z+1/2; (xvii) x1/2, y+1/2, z; (xviii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaPr5Si3N9
Mr914.91
Crystal system, space groupOrthorhombic, Cmce
Temperature (K)293
a, b, c (Å)10.512 (2), 11.243 (2), 15.773 (3)
V3)1864.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)26.01
Crystal size (mm)0.17 × 0.10 × 0.08
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(XPREP; Sheldrick, 2008)
Tmin, Tmax0.040, 0.125
No. of measured, independent and
observed [I > 2σ(I)] reflections
9626, 1480, 1133
Rint0.080
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 0.97
No. of reflections1480
No. of parameters90
Δρmax, Δρmin (e Å3)2.10, 2.31

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

The authors thank Thomas Miller and Dr Oliver Oeckler for performing the single-crystal X-ray diffractometry. Financial support by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLissner, F. & Schleid, T. (2004). Z. Anorg. Allg. Chem. 630, 2226–2230.  Web of Science CrossRef CAS Google Scholar
First citationSchmolke, C., Bichler, D., Johrendt, D. & Schnick, W. (2009). Solid State Sci. 11, 389–394.  Web of Science CrossRef CAS Google Scholar
First citationSchnick, W. (2001). Int. J. Inorg. Mater. 3, 1267–1272.  Web of Science CrossRef CAS Google Scholar
First citationSchnick, W. & Huppertz, H. (1997). Chem. Eur. J. 3, 679–683.  CrossRef CAS Web of Science Google Scholar
First citationSchnick, W., Huppertz, H. & Lauterbach, R. (1999). J. Mater. Chem. 9, 289–296.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds