inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rb2Sb4O11

aSchool of Chemistry, University of Southampton, Highfield Campus, Southamtpon SO17 1BJ, England
*Correspondence e-mail: kg1t07@soton.ac.uk

(Received 22 April 2009; accepted 29 April 2009; online 7 May 2009)

The title compound, dirubidium tetra­anti­monate(V), Rb2Sb4O11, has been synthesized by flux reaction. It is isotypic with known A2Sb4O11 (A = K, Cs) structures and consists of an (Sb4O11)2− skeleton and two Rb atoms as charge-compensating cations. Distorted SbO6 octa­hedra share edges and corners, resulting in a layered assembly. Alternate stacking of the layers along the c axis leads to the formation of tunnels. The Rb+ ions, surrounded by nine and ten O atoms, respectively, are located in these tunnels. Some atoms in the structure are on special positions of m symmetry (two Sb atoms, both Rb atoms and four O atoms) and 2 symmetry (one O atom).

Related literature

Isotypic structures have been reported by Hong (1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]) [K2Sb4O11] and by Hirschle et al. (2001[Hirschle, C. J. R., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. Teil B, 56, 169-178.]) [Cs2Sb4O11]. For Rb—O distances in the crystal structure of Rb3Ti2(TiO)(PO4)3P2O7, see: Duhlev (1994[Duhlev, R. (1994). Acta Cryst. C50, 1523-1525.]).

Experimental

Crystal data
  • Rb2Sb4O11

  • Mr = 833.94

  • Monoclinic, C 2/m

  • a = 19.5045 (11) Å

  • b = 7.5681 (4) Å

  • c = 7.2115 (4) Å

  • β = 95.203 (3)°

  • V = 1060.12 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 19.26 mm−1

  • T = 120 K

  • 0.12 × 0.12 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.110, Tmax = 0.120

  • 7605 measured reflections

  • 1312 independent reflections

  • 1234 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.41

  • 1312 reflections

  • 91 parameters

  • 18 restraints

  • Δρmax = 1.89 e Å−3

  • Δρmin = −1.91 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—O4 1.940 (4)
Sb1—O3i 1.956 (5)
Sb1—O1ii 1.986 (3)
Sb1—O2 2.089 (5)
Sb2—O3iii 1.903 (5)
Sb2—O6iv 1.970 (3)
Sb2—O2v 1.977 (5)
Sb2—O5iii 1.993 (5)
Sb2—O2iii 2.129 (5)
Sb3—O8 1.9281 (15)
Sb3—O4 1.959 (4)
Sb3—O7vi 1.978 (4)
Sb3—O7 1.979 (4)
Sb3—O6 2.005 (4)
Sb3—O5 2.0261 (14)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, y, -z+1; (v) x-1, y, z; (vi) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO nd COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Single crystals of the title compound (1), were formed inadvertently during one of our flux syntheses aimed at producing new oxides in the quaternary Rb/Sb/B/O system. There are two A2Sb4O11 (A = K, Cs) compounds known and their structures were determined by single-crystal X-ray diffraction (Hong, 1974 and Hirschle et al., 2001). A2Sb4O11(A = K, Cs) crystallize in the centrosymmetric space group C2/m and have two-dimensional structures with Sb in octahedral coordination. In K2Sb4O11, the K+ ions are mobile in the tunnels. The K+ ions have been ion-exchanged with Na+, Ag+, Rb+ and TI+ in molten salts, but neither their unit-cell parameters nor their crystal structures are available (Hong, 1974). In Cs2Sb4O11, Cs+ ions are not mobile (Hirschle et al., 2001). Here, we report the crystal structure of Rb2Sb4O11, confirming that it is isotypic with A2Sb4O11 (A = K, Cs).

The crystal structure of compound (1) contains two Rb (Rb1 and Rb2), three Sb (Sb1, Sb2 and Sb3) and eight O (O1—O8) atoms (Fig.1). The atoms Sb1, O4, O6 and O7 are on general positions, all other atoms are on special positions, viz. mirror planes and twofold-rotation axes. Each antimony atom is coordinated to six oxygen atoms to form distorted octahedra with Sb—O distances ranging from 1.903 (4) to 2.129 (5) Å, comparable to those in the isotypic antimonates(V) (Hong, 1974; Hirschle et al., 2001). Rb1 is nine fold coordinated and Rb2 is ten fold coordinated to oxygen atoms (Fig. 2 (a) and 2(b)) with Rb—O distances ranging from 2.933 (4) - 3.473 (4) Å, comparable to Rb3Ti2(TiO)(PO4)3P2O7 (Duhlev, 1994). The coordination number of Rb+ ion differs from the the 11 coordinated A+ ions reported for the isotypic A2Sb4O11 (A = K, Cs) compounds, where the non bonding distances of K—O; 3.78 (3) - 3.832 (4) Å, Cs—O; 3.721 (8) - 3.940 (9) Å were considered as bonds.

In the asymmetric unit of the title compound (1) all oxygen atoms are shared between two SbO6 octahedra, except the oxygen atoms O(2) and O(4), that are common to all three Sb(1)O6, Sb(2)O6 and Sb(3)O6 octahedra (Fig. 1). In compound (1), there are two different layers (1 and 2) formed by edge-sharing of Sb(1)—Sb(1), Sb(2)—Sb(2) and Sb(3)—Sb(3) octahedra to form three types of Sb2O10 dimers (Fig. 3). Layer 1 is formed by edge-sharing of the Sb2(2)O10 and Sb2(3)O10 dimers and layer 2 is formed by Sb2(1)O10 dimers sharing corners with the layer 1. Alternate stacking of these two layers along the c axis leads to formation of tunnels and Rb+ ions are located in these tunnels. The single-crystal data was measured at 123 K and the displacement parameters observed for Rb+ are roughly isotropic, indicating that they are not mobile in the channels.

Related literature top

Isotypic structures have been reported by Hong (1974) [K2Sb4O11] and by Hirschle et al. (2001) [Cs2Sb4O11]. For Rb—O distances in the crystal structure of Rb3Ti2(TiO)(PO4)3P2O7, see: Duhlev (1994).

Experimental top

A mixture of Rb2CO3 (Aldrich, 0.6224 g; 2.70 mmol), Sb2O3 (Aldrich, 0.3143 g; 1.08 mmol) and H3BO3 (Aldrich,0.5000 g; 8.09 mmol) was ground in a mortar and pestle. The ground mixture was then added into a platinum crucible. The furnace temperature was slowly raised from room temperature and heated at 773 K for 12 hrs, 923 K for a further 12 hrs, and then kept at 1273 K for 24 hrs. The furnace was cooled to room temperature over a period of 48 hrs. The melt was washed with hot water to remove the excess boric acid, filtered and dried in an oven at 353 K. Colourless crystals of compound (1) were obtained from the melt.

Refinement top

All atoms were refined anisotropically. It was necessary to apply SHELX ISOR restraints to O2, O5 and O1; a value of 0.001 Å2 was used. The highest peak and the deepest hole of the final Fourier map are located at 1.85 Å from Rb1 and 0.85 Å from the Sb2 atom, respectively.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the asymmetric unit of compound (1) Thermal ellipsoids are given at the 50% probability level. [Symmetry codes: (i) x, -y, z; (ii) -x + 2, -y, -z + 2; (iii) -x + 2, -y - 1, -z + 2; (iv) -x + 2, y - 1, -z + 1; (v) -x + 2, -y - 1, -z + 1; (vi) x, y - 1, z; (vii) -x + 3/2, -y - 1/2, -z + 1].
[Figure 2] Fig. 2. ORTEP diagrams of the coordination environment of (a) Rb1 and (b) Rb2 atoms of compound (1). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes (i) x, -y, z; (ii) -x + 2, -y, -z + 2; iii) -x + 2, -y - 1, -z + 2; (iv) -x + 2, y - 1, -z + 1; (v) -x + 2, -y - 1, -z + 1].
[Figure 3] Fig. 3. Polyhedral representation of compound (1) along the ac plane: blue octahedra, red spheres, green spheres represent SbO6, O and Rb atoms respectively
Dirubidium tetraantimonate(V) top
Crystal data top
Rb2Sb4O11F(000) = 1464
Mr = 833.94Dx = 5.225 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1307 reflections
a = 19.5045 (11) Åθ = 2.9–27.5°
b = 7.5681 (4) ŵ = 19.26 mm1
c = 7.2115 (4) ÅT = 120 K
β = 95.203 (3)°Block, colourless
V = 1060.12 (10) Å30.12 × 0.12 × 0.11 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1312 independent reflections
Radiation source: Nonius FR591 Rotating Anode1234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.7°
ϕ and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 99
Tmin = 0.110, Tmax = 0.120l = 98
7605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.029P)2 + 1.4332P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.41Δρmax = 1.89 e Å3
1312 reflectionsΔρmin = 1.91 e Å3
91 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 restraintsExtinction coefficient: 0.00092 (9)
Crystal data top
Rb2Sb4O11V = 1060.12 (10) Å3
Mr = 833.94Z = 4
Monoclinic, C2/mMo Kα radiation
a = 19.5045 (11) ŵ = 19.26 mm1
b = 7.5681 (4) ÅT = 120 K
c = 7.2115 (4) Å0.12 × 0.12 × 0.11 mm
β = 95.203 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1312 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1234 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 0.120Rint = 0.038
7605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02891 parameters
wR(F2) = 0.07218 restraints
S = 1.41Δρmax = 1.89 e Å3
1312 reflectionsΔρmin = 1.91 e Å3
Special details top

Experimental. SADABS was used to perform the Absorption correction

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.92822 (2)0.00000.90178 (6)0.00457 (16)
Sb20.07568 (2)0.00000.61748 (6)0.00476 (16)
Sb30.825607 (17)0.25714 (4)0.56390 (5)0.00453 (15)
Rb10.99190 (4)0.50000.74518 (10)0.0115 (2)
Rb20.73468 (4)0.00000.00596 (10)0.0128 (2)
O10.00000.1704 (7)0.00000.0060 (10)
O20.9765 (3)0.00000.6548 (7)0.0045 (10)
O30.8831 (3)0.00000.1331 (7)0.0080 (11)
O40.8715 (2)0.1971 (5)0.8087 (5)0.0081 (8)
O50.8339 (3)0.00000.4910 (7)0.0072 (10)
O60.9112 (2)0.2537 (4)0.4296 (5)0.0061 (8)
O70.7364 (2)0.2127 (5)0.6665 (5)0.0069 (8)
O80.8392 (3)0.50000.6392 (7)0.0070 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0050 (3)0.0049 (3)0.0039 (3)0.0000.00008 (18)0.000
Sb20.0046 (3)0.0052 (3)0.0045 (3)0.0000.00049 (18)0.000
Sb30.0045 (2)0.0042 (2)0.0049 (2)0.00016 (12)0.00030 (15)0.00009 (11)
Rb10.0108 (4)0.0125 (4)0.0111 (4)0.0000.0012 (3)0.000
Rb20.0155 (4)0.0137 (4)0.0096 (4)0.0000.0027 (3)0.000
O10.0054 (13)0.0058 (13)0.0067 (13)0.0000.0007 (9)0.000
O20.0041 (13)0.0048 (13)0.0047 (13)0.0000.0004 (9)0.000
O30.012 (3)0.010 (3)0.002 (2)0.0000.001 (2)0.000
O40.011 (2)0.0064 (18)0.0073 (19)0.0017 (16)0.0009 (15)0.0001 (14)
O50.0067 (13)0.0076 (13)0.0073 (13)0.0000.0009 (9)0.000
O60.0042 (19)0.005 (2)0.009 (2)0.0001 (13)0.0008 (15)0.0010 (13)
O70.006 (2)0.0095 (18)0.0050 (18)0.0001 (16)0.0024 (14)0.0001 (14)
O80.009 (3)0.006 (2)0.006 (2)0.0000.001 (2)0.000
Geometric parameters (Å, º) top
Sb1—O41.940 (4)Rb1—O83.007 (5)
Sb1—O4i1.940 (4)Rb1—O6x3.011 (4)
Sb1—O3ii1.956 (5)Rb1—O6xi3.011 (4)
Sb1—O1iii1.986 (3)Rb1—O1iv3.094 (4)
Sb1—O1iv1.986 (3)Rb1—O1xii3.094 (4)
Sb1—O22.089 (5)Rb1—O6xiii3.238 (4)
Sb1—Sb1v3.0211 (10)Rb1—O63.238 (4)
Sb2—O3iv1.903 (5)Rb1—O4xiii3.343 (4)
Sb2—O6vi1.970 (3)Rb1—O43.343 (4)
Sb2—O6iv1.970 (3)Rb1—Rb1xi3.5787 (14)
Sb2—O2vii1.977 (5)Rb1—Rb1xiv3.6602 (14)
Sb2—O5iv1.993 (5)Rb2—O7xv2.933 (4)
Sb2—O2iv2.129 (5)Rb2—O7xvi2.933 (4)
Sb2—Sb3iv3.1084 (5)Rb2—O32.956 (5)
Sb2—Sb3vi3.1084 (5)Rb2—O8ix3.048 (5)
Sb2—Sb2viii3.2679 (10)Rb2—O7xvii3.222 (4)
Sb3—O81.9281 (15)Rb2—O7ix3.222 (4)
Sb3—O41.959 (4)Rb2—O4ix3.440 (4)
Sb3—O7ix1.978 (4)Rb2—O4xvii3.440 (4)
Sb3—O71.979 (4)Rb2—O4xvi3.473 (4)
Sb3—O62.005 (4)Rb2—O4xv3.473 (4)
Sb3—O52.0261 (14)Rb2—Rb2xviii3.8331 (3)
Sb3—Sb3ix3.0111 (7)Rb2—Rb2xix3.8331 (3)
Sb3—Sb2iv3.1084 (5)
O4—Sb1—O4i100.5 (2)O6xiii—Rb1—O670.31 (13)
O4—Sb1—O3ii90.47 (15)O8—Rb1—O4xiii48.93 (8)
O4i—Sb1—O3ii90.47 (15)O6x—Rb1—O4xiii163.20 (9)
O4—Sb1—O1iii169.68 (15)O6xi—Rb1—O4xiii96.20 (9)
O4i—Sb1—O1iii89.17 (16)O1iv—Rb1—O4xiii118.05 (7)
O3ii—Sb1—O1iii93.05 (12)O1xii—Rb1—O4xiii50.52 (7)
O4—Sb1—O1iv89.17 (16)O6xiii—Rb1—O4xiii53.05 (9)
O4i—Sb1—O1iv169.68 (16)O6—Rb1—O4xiii100.87 (10)
O3ii—Sb1—O1iv93.05 (12)O8—Rb1—O448.93 (8)
O1iii—Sb1—O1iv81.0 (2)O6x—Rb1—O496.20 (9)
O4—Sb1—O289.55 (13)O6xi—Rb1—O4163.20 (9)
O4i—Sb1—O289.55 (14)O1iv—Rb1—O450.52 (7)
O3ii—Sb1—O2180.0 (2)O1xii—Rb1—O4118.05 (7)
O1iii—Sb1—O286.92 (11)O6xiii—Rb1—O4100.87 (10)
O1iv—Sb1—O286.92 (11)O6—Rb1—O453.05 (9)
O4—Sb1—Sb1v129.58 (11)O4xiii—Rb1—O486.60 (13)
O4i—Sb1—Sb1v129.58 (11)O7xv—Rb2—O7xvi66.58 (15)
O3ii—Sb1—Sb1v94.01 (16)O7xv—Rb2—O3100.00 (11)
O1iii—Sb1—Sb1v40.48 (11)O7xvi—Rb2—O3100.00 (11)
O1iv—Sb1—Sb1v40.48 (11)O7xv—Rb2—O8ix137.98 (10)
O2—Sb1—Sb1v85.95 (14)O7xvi—Rb2—O8ix137.98 (10)
O3iv—Sb2—O6vi96.46 (12)O3—Rb2—O8ix105.29 (14)
O3iv—Sb2—O6iv96.46 (12)O7xv—Rb2—O7xvii165.42 (8)
O6vi—Sb2—O6iv154.0 (2)O7xvi—Rb2—O7xvii103.13 (8)
O3iv—Sb2—O2vii101.9 (2)O3—Rb2—O7xvii70.82 (10)
O6vi—Sb2—O2vii99.63 (12)O8ix—Rb2—O7xvii56.58 (9)
O6iv—Sb2—O2vii99.63 (12)O7xv—Rb2—O7ix103.13 (8)
O3iv—Sb2—O5iv93.3 (2)O7xvi—Rb2—O7ix165.42 (8)
O6vi—Sb2—O5iv78.42 (12)O3—Rb2—O7ix70.82 (10)
O6iv—Sb2—O5iv78.42 (12)O8ix—Rb2—O7ix56.58 (9)
O2vii—Sb2—O5iv164.8 (2)O7xvii—Rb2—O7ix84.86 (13)
O3iv—Sb2—O2iv176.5 (2)O7xv—Rb2—O4ix90.66 (9)
O6vi—Sb2—O2iv84.25 (12)O7xvi—Rb2—O4ix137.99 (10)
O6iv—Sb2—O2iv84.25 (12)O3—Rb2—O4ix119.13 (9)
O2vii—Sb2—O2iv74.6 (2)O8ix—Rb2—O4ix47.69 (7)
O5iv—Sb2—O2iv90.24 (19)O7xvii—Rb2—O4ix103.67 (9)
O3iv—Sb2—Sb3iv99.95 (13)O7ix—Rb2—O4ix48.47 (9)
O6vi—Sb2—Sb3iv116.27 (12)O7xv—Rb2—O4xvii137.99 (10)
O6iv—Sb2—Sb3iv38.97 (12)O7xvi—Rb2—O4xvii90.66 (9)
O2vii—Sb2—Sb3iv135.10 (7)O3—Rb2—O4xvii119.13 (9)
O5iv—Sb2—Sb3iv39.73 (3)O8ix—Rb2—O4xvii47.69 (7)
O2iv—Sb2—Sb3iv82.79 (11)O7xvii—Rb2—O4xvii48.47 (9)
O3iv—Sb2—Sb3vi99.95 (13)O7ix—Rb2—O4xvii103.67 (9)
O6vi—Sb2—Sb3vi38.97 (12)O4ix—Rb2—O4xvii83.58 (13)
O6iv—Sb2—Sb3vi116.27 (12)O7xv—Rb2—O4xvi80.00 (10)
O2vii—Sb2—Sb3vi135.10 (7)O7xvi—Rb2—O4xvi49.82 (9)
O5iv—Sb2—Sb3vi39.73 (3)O3—Rb2—O4xvi50.19 (10)
O2iv—Sb2—Sb3vi82.79 (11)O8ix—Rb2—O4xvi141.55 (9)
Sb3iv—Sb2—Sb3vi77.522 (16)O7xvii—Rb2—O4xvi85.45 (9)
O3iv—Sb2—Sb2viii140.79 (17)O7ix—Rb2—O4xvi120.02 (9)
O6vi—Sb2—Sb2viii92.06 (12)O4ix—Rb2—O4xvi163.25 (10)
O6iv—Sb2—Sb2viii92.06 (12)O4xvii—Rb2—O4xvi112.65 (7)
O2vii—Sb2—Sb2viii38.89 (14)O7xv—Rb2—O4xv49.82 (9)
O5iv—Sb2—Sb2viii125.90 (15)O7xvi—Rb2—O4xv80.00 (10)
O2iv—Sb2—Sb2viii35.67 (14)O3—Rb2—O4xv50.19 (10)
Sb3iv—Sb2—Sb2viii110.286 (17)O8ix—Rb2—O4xv141.55 (9)
Sb3vi—Sb2—Sb2viii110.286 (17)O7xvii—Rb2—O4xv120.02 (9)
O8—Sb3—O485.82 (18)O7ix—Rb2—O4xv85.45 (9)
O8—Sb3—O7ix100.65 (19)O4ix—Rb2—O4xv112.65 (7)
O4—Sb3—O7ix168.10 (15)O4xvii—Rb2—O4xv163.25 (10)
O8—Sb3—O799.2 (2)O4xvi—Rb2—O4xv50.88 (12)
O4—Sb3—O788.24 (15)Rb2xviii—Rb2—Rb2xix161.64 (5)
O7ix—Sb3—O780.91 (16)Sb3ix—O7—Sb399.09 (16)
O8—Sb3—O692.83 (19)Sb3ix—O7—Rb2ii135.39 (17)
O4—Sb3—O695.72 (15)Sb3—O7—Rb2ii118.83 (16)
O7ix—Sb3—O693.94 (15)Sb3ix—O7—Rb2ix126.22 (16)
O7—Sb3—O6167.60 (15)Sb3—O7—Rb2ix93.33 (13)
O8—Sb3—O5167.6 (2)Rb2ii—O7—Rb2ix76.87 (8)
O4—Sb3—O588.31 (18)Sb2iv—O6—Sb3102.87 (16)
O7ix—Sb3—O587.13 (18)Sb2iv—O6—Rb1xi115.79 (16)
O7—Sb3—O591.56 (18)Sb3—O6—Rb1xi140.87 (15)
O6—Sb3—O576.85 (17)Sb2iv—O6—Rb1128.30 (17)
O8—Sb3—Sb3ix103.08 (16)Sb3—O6—Rb191.48 (12)
O4—Sb3—Sb3ix128.50 (11)Rb1xi—O6—Rb169.77 (8)
O7ix—Sb3—Sb3ix40.47 (11)Sb2xx—O2—Sb1129.7 (2)
O7—Sb3—Sb3ix40.43 (10)Sb2xx—O2—Sb2iv105.4 (2)
O6—Sb3—Sb3ix133.40 (11)Sb1—O2—Sb2iv124.9 (2)
O5—Sb3—Sb3ix89.14 (15)Sb2iv—O3—Sb1xv128.4 (3)
O8—Sb3—Sb2iv129.85 (16)Sb2iv—O3—Rb2127.7 (2)
O4—Sb3—Sb2iv89.09 (11)Sb1xv—O3—Rb2103.86 (19)
O7ix—Sb3—Sb2iv94.24 (11)Sb2iv—O5—Sb3i101.30 (15)
O7—Sb3—Sb2iv130.51 (11)Sb2iv—O5—Sb3101.30 (15)
O6—Sb3—Sb2iv38.16 (9)Sb3i—O5—Sb3147.7 (3)
O5—Sb3—Sb2iv38.97 (15)Sb1xxi—O1—Sb1iv99.0 (2)
Sb3ix—Sb3—Sb2iv118.398 (18)Sb1xxi—O1—Rb1iv137.03 (6)
O8—Rb1—O6x122.58 (10)Sb1iv—O1—Rb1iv108.38 (6)
O8—Rb1—O6xi122.58 (10)Sb1xxi—O1—Rb1xxii108.38 (6)
O6x—Rb1—O6xi76.51 (14)Sb1iv—O1—Rb1xxii137.03 (6)
O8—Rb1—O1iv98.45 (6)Rb1iv—O1—Rb1xxii72.53 (11)
O6x—Rb1—O1iv75.47 (8)Sb3xiii—O8—Sb3144.8 (3)
O6xi—Rb1—O1iv138.39 (8)Sb3xiii—O8—Rb1100.33 (16)
O8—Rb1—O1xii98.45 (6)Sb3—O8—Rb1100.33 (16)
O6x—Rb1—O1xii138.39 (8)Sb3xiii—O8—Rb2ix99.97 (16)
O6xi—Rb1—O1xii75.47 (8)Sb3—O8—Rb2ix99.97 (16)
O1iv—Rb1—O1xii107.47 (11)Rb1—O8—Rb2ix108.63 (15)
O8—Rb1—O6xiii54.15 (10)Sb1—O4—Sb3133.59 (19)
O6x—Rb1—O6xiii110.23 (8)Sb1—O4—Rb1100.91 (14)
O6xi—Rb1—O6xiii68.45 (13)Sb3—O4—Rb189.24 (12)
O1iv—Rb1—O6xiii151.31 (8)Sb1—O4—Rb2ix136.26 (15)
O1xii—Rb1—O6xiii87.06 (8)Sb3—O4—Rb2ix87.33 (12)
O8—Rb1—O654.15 (10)Rb1—O4—Rb2ix92.95 (9)
O6x—Rb1—O668.45 (13)Sb1—O4—Rb2ii87.90 (12)
O6xi—Rb1—O6110.23 (8)Sb3—O4—Rb2ii99.39 (14)
O1iv—Rb1—O687.06 (8)Rb1—O4—Rb2ii157.86 (12)
O1xii—Rb1—O6151.31 (8)Rb2ix—O4—Rb2ii67.35 (7)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z+1; (v) x+2, y, z+2; (vi) x+1, y, z+1; (vii) x1, y, z; (viii) x, y, z+1; (ix) x+3/2, y1/2, z+1; (x) x+2, y, z+1; (xi) x+2, y1, z+1; (xii) x+1, y1, z+1; (xiii) x, y1, z; (xiv) x+2, y1, z+2; (xv) x, y, z1; (xvi) x, y, z1; (xvii) x+3/2, y+1/2, z+1; (xviii) x+3/2, y+1/2, z; (xix) x+3/2, y1/2, z; (xx) x+1, y, z; (xxi) x1, y, z1; (xxii) x1, y+1, z1.

Experimental details

Crystal data
Chemical formulaRb2Sb4O11
Mr833.94
Crystal system, space groupMonoclinic, C2/m
Temperature (K)120
a, b, c (Å)19.5045 (11), 7.5681 (4), 7.2115 (4)
β (°) 95.203 (3)
V3)1060.12 (10)
Z4
Radiation typeMo Kα
µ (mm1)19.26
Crystal size (mm)0.12 × 0.12 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.110, 0.120
No. of measured, independent and
observed [I > 2σ(I)] reflections
7605, 1312, 1234
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.41
No. of reflections1312
No. of parameters91
No. of restraints18
Δρmax, Δρmin (e Å3)1.89, 1.91

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Sb1—O41.940 (4)Sb2—O2iii2.129 (5)
Sb1—O3i1.956 (5)Sb3—O81.9281 (15)
Sb1—O1ii1.986 (3)Sb3—O41.959 (4)
Sb1—O22.089 (5)Sb3—O7vi1.978 (4)
Sb2—O3iii1.903 (5)Sb3—O71.979 (4)
Sb2—O6iv1.970 (3)Sb3—O62.005 (4)
Sb2—O2v1.977 (5)Sb3—O52.0261 (14)
Sb2—O5iii1.993 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+3/2, y1/2, z+1.
 

Acknowledgements

The authors thank the EPSRC for funding, the EPSRC National Crystallography Service for the use of the KappaCCD diffractometer and Dr Mark E. Light for useful discussions.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuhlev, R. (1994). Acta Cryst. C50, 1523–1525.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirschle, C. J. R., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. Teil B, 56, 169-178.  CAS Google Scholar
First citationHong, H. Y.-P. (1974). Acta Cryst. B30, 945–952.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds