addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Thien­yl)-4,5-di­hydro-1H-imidazole. Corrigendum

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2009; accepted 18 May 2009; online 23 May 2009)

Consideration of a previous unrecognized twinning of the original investigated crystal of the title compound [Kia et al. (2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o301.]). Acta Cryst. E65, o301] led to improved reliability factors and to a slightly higher precision for all geometric parameters. The crystal under investigation was twinned by pseudo-merohedry with [100, 0[\overline{1}]0, 00[\overline{1}]] as the twin matrix and a refined twin domain fraction of 0.9610 (5):0.0390 (5). The results of the new crystal structure refinement are given here.

2. Experimental

2.1.1. Crystal data
  • C7H8N2S

  • Mr = 152.21

  • Monoclinic, P 21 /c

  • a = 6.1321 (2) Å

  • b = 11.5663 (3) Å

  • c = 10.0098 (3) Å

  • β = 90.154 (1)°

  • V = 709.95 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.54 × 0.28 × 0.22 mm

2.1.2. Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.922

  • 28316 measured reflections

  • 3100 independent reflections

  • 3040 reflections with I > 2σ(I)

  • Rint = 0.021

2.1.3. Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.080

  • S = 1.15

  • 3100 reflections

  • 96 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.857 (16) 2.130 (16) 2.9803 (10) 171.5 (16)
C3—H3A⋯N2i 0.95 2.59 3.4815 (11) 156
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

2-(2-Thienyl)-4,5-dihydro-1H-imidazole top
Crystal data top
C7H8N2SF(000) = 320
Mr = 152.21Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9869 reflections
a = 6.1321 (2) Åθ = 2.5–34.3°
b = 11.5663 (3) ŵ = 0.37 mm1
c = 10.0098 (3) ÅT = 100 K
β = 90.154 (1)°Block, colourless
V = 709.95 (4) Å30.54 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3100 independent reflections
Radiation source: fine-focus sealed tube3040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 35.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.825, Tmax = 0.922k = 1817
28316 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.2148P]
where P = (Fo2 + 2Fc2)/3
3100 reflections(Δ/σ)max = 0.001
96 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46976 (3)0.141639 (18)0.59512 (2)0.01527 (6)
N20.06708 (11)0.29657 (6)0.61145 (7)0.01355 (11)
N10.04589 (11)0.30384 (6)0.83752 (7)0.01323 (11)
C10.63940 (14)0.05379 (8)0.68566 (9)0.01780 (15)
H1A0.75520.01010.64800.021*
C20.58842 (14)0.05399 (7)0.81867 (9)0.01659 (14)
H2A0.66460.01000.88390.020*
C30.40890 (13)0.12729 (7)0.84861 (8)0.01337 (13)
H3A0.35240.13820.93600.016*
C40.32621 (12)0.18073 (6)0.73587 (7)0.01149 (12)
C50.14267 (12)0.26046 (6)0.72548 (7)0.01079 (11)
C60.15422 (13)0.36275 (7)0.79460 (8)0.01479 (14)
H6A0.17230.43800.84040.018*
H6B0.28480.31440.81030.018*
C70.11001 (13)0.37870 (7)0.64400 (8)0.01491 (13)
H7A0.24250.36110.59110.018*
H7B0.06430.45910.62480.018*
H10.058 (3)0.2686 (14)0.9125 (16)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01701 (9)0.01822 (10)0.01059 (9)0.00444 (6)0.00195 (6)0.00027 (6)
N20.0150 (3)0.0168 (3)0.0088 (2)0.0027 (2)0.0001 (2)0.0007 (2)
N10.0146 (3)0.0166 (3)0.0084 (2)0.0032 (2)0.0013 (2)0.0004 (2)
C10.0174 (3)0.0179 (3)0.0181 (4)0.0052 (3)0.0000 (3)0.0017 (3)
C20.0188 (3)0.0151 (3)0.0159 (3)0.0033 (3)0.0028 (3)0.0004 (2)
C30.0164 (3)0.0128 (3)0.0109 (3)0.0005 (2)0.0005 (2)0.0004 (2)
C40.0132 (3)0.0117 (3)0.0096 (3)0.0006 (2)0.0003 (2)0.0002 (2)
C50.0119 (3)0.0114 (3)0.0090 (3)0.0006 (2)0.0006 (2)0.0005 (2)
C60.0138 (3)0.0178 (3)0.0127 (3)0.0027 (2)0.0021 (2)0.0005 (2)
C70.0147 (3)0.0179 (3)0.0121 (3)0.0035 (2)0.0001 (2)0.0020 (2)
Geometric parameters (Å, º) top
S1—C11.7120 (9)C2—H2A0.9500
S1—C41.7236 (8)C3—C41.3819 (11)
N2—C51.2996 (10)C3—H3A0.9500
N2—C71.4798 (11)C4—C51.4586 (10)
N1—C51.3657 (10)C6—C71.5435 (12)
N1—C61.4669 (11)C6—H6A0.9900
N1—H10.858 (16)C6—H6B0.9900
C1—C21.3684 (13)C7—H7A0.9900
C1—H1A0.9500C7—H7B0.9900
C2—C31.4221 (12)
C1—S1—C491.94 (4)C5—C4—S1120.21 (5)
C5—N2—C7105.85 (6)N2—C5—N1116.64 (7)
C5—N1—C6107.17 (6)N2—C5—C4122.62 (7)
C5—N1—H1120.4 (11)N1—C5—C4120.71 (6)
C6—N1—H1123.3 (11)N1—C6—C7101.10 (6)
C2—C1—S1111.96 (6)N1—C6—H6A111.6
C2—C1—H1A124.0C7—C6—H6A111.6
S1—C1—H1A124.0N1—C6—H6B111.6
C1—C2—C3112.65 (7)C7—C6—H6B111.6
C1—C2—H2A123.7H6A—C6—H6B109.4
C3—C2—H2A123.7N2—C7—C6105.62 (6)
C4—C3—C2112.15 (7)N2—C7—H7A110.6
C4—C3—H3A123.9C6—C7—H7A110.6
C2—C3—H3A123.9N2—C7—H7B110.6
C3—C4—C5128.49 (7)C6—C7—H7B110.6
C3—C4—S1111.29 (6)H7A—C7—H7B108.7
C4—S1—C1—C20.09 (7)C6—N1—C5—N212.15 (9)
S1—C1—C2—C30.35 (10)C6—N1—C5—C4169.84 (7)
C1—C2—C3—C40.50 (11)C3—C4—C5—N2173.20 (8)
C2—C3—C4—C5179.29 (8)S1—C4—C5—N26.50 (10)
C2—C3—C4—S10.43 (9)C3—C4—C5—N18.92 (12)
C1—S1—C4—C30.20 (7)S1—C4—C5—N1171.38 (6)
C1—S1—C4—C5179.55 (7)C5—N1—C6—C717.77 (8)
C7—N2—C5—N10.30 (9)C5—N2—C7—C611.91 (9)
C7—N2—C5—C4177.67 (7)N1—C6—C7—N217.89 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.857 (16)2.130 (16)2.9803 (10)171.5 (16)
C3—H3A···N2i0.952.593.4815 (11)156
Symmetry code: (i) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5471-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds