organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1β,2α,3α,7α,11α,13β)-1,3,7,11-Tetra­acet­­oxy-2,13-bis­­(benz­yl­oxy)-21-methyl-19,21-secohetisan-19-al hemi­hydrate

aDepartment of Chemistry and Life Sciences, Leshan Teachers' College, Leshan 614004, People's Republic of China
*Correspondence e-mail: fzchen7200@163.com

(Received 7 April 2009; accepted 14 May 2009; online 29 May 2009)

In the crystal structure of the title compound, C43H46NO13·0.5H2O, the mol­ecule assumes a U-shaped conformation, the terminal benzene rings being approximately parallel and partially overlapped with each other. The mol­ecule contains eight alicyclic and heterocyclic rings. The cyclo­hexane rings adopt chair conformations, the other three six-membered carbocyclic rings form a bicyclo­[2.2.2]octane system with a boat conformation for each six-membered ring, the six-membered heterocyclic ring has a chair conformation and both of the five-membered rings have envelope conformations. The solvent water mol­ecule links with the organic mol­ecule via classic O—H⋯O and weak C—H⋯O hydrogen bonding in the crystal structure.

Related literature

For general background, see: Deng et al. (1992[Deng, Y. P., Chen, D. H. & Sun, W. L. (1992). Acta Chim. Sinica, 50, 822-826.]).

[Scheme 1]

Experimental

Crystal data
  • C43H46NO13·0.5H2O

  • Mr = 793.82

  • Orthorhombic, P 21 21 21

  • a = 11.517 (3) Å

  • b = 18.045 (4) Å

  • c = 19.241 (4) Å

  • V = 3998.7 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.52 × 0.46 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4333 measured reflections

  • 4092 independent reflections

  • 2220 reflections with I > 2σ(I)

  • Rint = 0.007

  • 3 standard reflections every 250 reflections intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.00

  • 4092 reflections

  • 530 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O11i 0.89 2.38 3.205 (15) 155
O1W—H1B⋯O6 0.90 2.39 3.208 (15) 151
C15—H15A⋯O4ii 0.97 2.48 3.359 (8) 150
C23—H23B⋯O1W 0.96 2.58 3.491 (17) 159
C29—H29⋯O7iii 0.93 2.40 3.290 (8) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. Abstract PA104. American Crystallographic Association Meeting, Pittsburgh, USA.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The diterpenoid alkaloid, acetyldelgradine, has been isolated from Delphiniumgrandiflorum L. (Deng et al., 1992) and its structure was established from the spectroscopic data. In our current investigation, the title compound was isolated from Aconitum carmichaeli Debx, and its structure was confirmed by X-ray diffraction study.

Themolecular structure of the title compound is shown in Fig. 1. The molecule of the title compound assumes an U-shaped conformation, with terminal benzene rings being approximately parallel and partially overlapped to each other. The molecule contains eight alicyclic and heterocyclic rings. Cyclohexane rings A (C1/C2/C3/C4/C5/C10) and B (C5/C6/C7/C8/C9/C10) adopt chair conformations; six-membered rings C (C8/C9/C11/C12/C13/C14), D (C8/C9/C11/C12/C15/C16) and E (C8/C12/C13/C14/C15/C16) form a bicycle [2.2.2] octane system with the boat conformation for each six-membered ring C, D and E; the six-membered heterocyclic ring F (C6/C7/C8/C14/C20/N1) adopts a screw-boat conformation; while the five-membered rings G (C5/C6/C10/C20/N1) and H (C8/C9/C10/C14/C20) adopt the same envelope conformation.

The lattice water molecule links with the organic molecule via O—H···O hydrogen bonding, and weak molecular C—H···O hydrogen bonding is also present in the crystal structure (Table 1).

Related literature top

For general background, see: Deng et al. (1992).

Experimental top

The title compound was isolated from the roots of Aconitum carmichaeli Debx and crystals suitable for X-ray structure analysis were obtained by slow evaporation from an acetone-water solution at room temperature.

Refinement top

Water H atoms were placed on chemical-sensible positions, other H atoms were located geometrically with C—H = 0.93–0.98 Å. H atoms were refined using a riding model with Uiso(H) =1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). The absolute configuration was not determined, and Friedel pairs were merged.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Dashed line indicates hydrogen bonding.
(1β,2α,3α,7α,11α,13β)-1,3,7,11-Tetraacetoxy-2,13-bis(benzyloxy)- 21-dimethyl-19,21-secohetisan-19-al hemihydrate top
Crystal data top
C43H46NO13·0.5H2OF(000) = 1680
Mr = 793.82Dx = 1.319 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 36 reflections
a = 11.517 (3) Åθ = 4.6–9.6°
b = 18.045 (4) ŵ = 0.10 mm1
c = 19.241 (4) ÅT = 292 K
V = 3998.7 (16) Å3Block, colourless
Z = 40.52 × 0.46 × 0.42 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.6°
Graphite monochromatorh = 313
ω/2θ scansk = 821
4333 measured reflectionsl = 423
4092 independent reflections3 standard reflections every 250 reflections
2220 reflections with I > 2σ(I) intensity decay: 2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0817P)2]
where P = (Fo2 + 2Fc2)/3
4092 reflections(Δ/σ)max = 0.001
530 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C43H46NO13·0.5H2OV = 3998.7 (16) Å3
Mr = 793.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.517 (3) ŵ = 0.10 mm1
b = 18.045 (4) ÅT = 292 K
c = 19.241 (4) Å0.52 × 0.46 × 0.42 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
4333 measured reflections3 standard reflections every 250 reflections
4092 independent reflections intensity decay: 2.0%
2220 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
4092 reflectionsΔρmin = 0.24 e Å3
530 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.8109 (4)0.4658 (2)0.2072 (2)0.0424 (10)
O10.4566 (3)0.41227 (19)0.30263 (17)0.0473 (9)
O20.3551 (4)0.3061 (3)0.3012 (3)0.0824 (13)
O30.6957 (3)0.29181 (18)0.25073 (15)0.0438 (8)
O40.6532 (5)0.1788 (2)0.2904 (3)0.109 (2)
O50.7455 (3)0.3093 (2)0.39340 (16)0.0563 (10)
O60.6180 (7)0.2970 (4)0.4783 (3)0.137 (3)
O70.9560 (4)0.4295 (2)0.3264 (2)0.0677 (12)
O80.7968 (4)0.63060 (19)0.16840 (17)0.0547 (10)
O90.8387 (5)0.6961 (2)0.2649 (2)0.0863 (16)
O100.3615 (3)0.4339 (2)0.16916 (18)0.0506 (9)
O110.2044 (4)0.4848 (3)0.1230 (3)0.0971 (16)
O120.5520 (3)0.38202 (18)0.07900 (15)0.0492 (10)
O130.7089 (5)0.3518 (2)0.0167 (2)0.0816 (14)
O1W0.4527 (15)0.4368 (6)0.5068 (7)0.157 (5)0.50
H1A0.39970.44410.53980.236*0.50
H1B0.50770.40210.51480.236*0.50
C10.5433 (4)0.3818 (3)0.2552 (2)0.0405 (12)
H10.50550.35740.21570.049*
C20.6125 (5)0.3258 (3)0.2978 (2)0.0438 (13)
H20.55990.28760.31580.053*
C30.6726 (5)0.3642 (3)0.3580 (2)0.0490 (15)
H30.61270.38040.39080.059*
C40.7491 (5)0.4309 (3)0.3412 (2)0.0468 (14)
C50.6813 (5)0.4848 (3)0.2924 (2)0.0418 (13)
H50.63200.51820.31970.050*
C60.7700 (5)0.5288 (3)0.2504 (2)0.0494 (14)
H60.83210.54870.27990.059*
C70.7118 (5)0.5894 (3)0.2074 (2)0.0459 (13)
H70.67280.62360.23930.055*
C80.6210 (5)0.5581 (3)0.1574 (2)0.0406 (12)
C90.5323 (4)0.5144 (3)0.2020 (2)0.0397 (12)
H90.50780.54570.24090.048*
C100.6107 (4)0.4495 (2)0.2311 (2)0.0362 (12)
C110.4261 (5)0.5014 (3)0.1534 (2)0.0458 (13)
H110.37290.54320.15990.055*
C120.4632 (5)0.5014 (3)0.0769 (2)0.0465 (14)
H120.40150.48160.04710.056*
C130.5756 (5)0.4594 (3)0.0665 (2)0.0478 (14)
H130.60090.46550.01820.057*
C140.6697 (5)0.4909 (3)0.1149 (2)0.0416 (13)
H140.73790.50610.08800.050*
C150.5672 (5)0.6171 (3)0.1110 (3)0.0489 (14)
H15A0.52220.65130.13910.059*
H15B0.62800.64490.08790.059*
C160.4908 (5)0.5817 (3)0.0584 (2)0.0507 (15)
C170.4573 (6)0.6101 (3)0.0017 (3)0.0678 (17)
H17A0.48300.65770.01360.102*
H17B0.40970.58390.03070.102*
C180.7737 (6)0.4725 (3)0.4089 (2)0.0660 (18)
H18A0.70380.47530.43600.099*
H18B0.80040.52160.39840.099*
H18C0.83230.44660.43480.099*
C190.8629 (5)0.4042 (3)0.3101 (3)0.0517 (15)
H190.86070.36670.27710.062*
C200.7053 (4)0.4388 (3)0.1735 (2)0.0394 (12)
H200.71200.38720.15810.047*
C210.9154 (5)0.4730 (4)0.1657 (3)0.0621 (16)
H21A0.98100.47980.19580.093*
H21B0.90810.51500.13540.093*
H21C0.92610.42900.13850.093*
C220.3641 (6)0.3712 (4)0.3187 (3)0.0628 (17)
C230.2783 (6)0.4138 (4)0.3600 (4)0.089 (2)
H23A0.26640.46140.33900.133*
H23B0.30690.42020.40650.133*
H23C0.20610.38720.36130.133*
C240.7091 (5)0.2182 (3)0.2527 (3)0.0515 (14)
C250.8001 (5)0.1921 (3)0.2039 (3)0.0517 (14)
C260.8602 (6)0.2382 (3)0.1606 (3)0.0606 (16)
H260.84400.28870.16130.073*
C270.9435 (6)0.2121 (4)0.1162 (3)0.0739 (19)
H270.98400.24420.08710.089*
C280.9662 (7)0.1361 (4)0.1156 (4)0.081 (2)
H281.02050.11720.08450.097*
C290.9110 (7)0.0901 (4)0.1591 (4)0.082 (2)
H290.93050.04010.15970.098*
C300.8267 (6)0.1156 (3)0.2026 (4)0.076 (2)
H300.78670.08290.23130.091*
C310.7080 (7)0.2792 (4)0.4532 (4)0.0745 (19)
C320.7891 (7)0.2250 (4)0.4806 (3)0.092 (2)
H32A0.86700.24310.47520.138*
H32B0.78070.17920.45580.138*
H32C0.77330.21690.52900.138*
C330.8555 (6)0.6848 (3)0.2056 (4)0.0667 (18)
C340.9414 (7)0.7233 (4)0.1601 (4)0.099 (2)
H34A0.90860.73020.11470.148*
H34B1.01040.69370.15660.148*
H34C0.96040.77060.17980.148*
C350.2509 (5)0.4329 (3)0.1512 (3)0.0550 (15)
C360.1945 (6)0.3630 (4)0.1650 (4)0.086 (2)
H36A0.25220.32500.17050.130*
H36B0.14450.35060.12680.130*
H36C0.14940.36680.20670.130*
C370.6245 (6)0.3329 (3)0.0482 (3)0.0553 (15)
C380.5864 (6)0.2548 (3)0.0582 (3)0.0549 (16)
C390.6559 (7)0.2000 (3)0.0315 (3)0.076 (2)
H390.72510.21210.00930.091*
C400.6216 (10)0.1249 (4)0.0379 (4)0.100 (3)
H400.66820.08720.02040.120*
C410.5203 (10)0.1088 (5)0.0698 (5)0.115 (3)
H410.49820.05940.07380.138*
C420.4482 (8)0.1630 (4)0.0966 (4)0.100 (2)
H420.37820.15070.11780.120*
C430.4837 (6)0.2370 (3)0.0908 (3)0.0716 (19)
H430.43740.27440.10920.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.033 (2)0.046 (2)0.048 (2)0.001 (2)0.006 (2)0.001 (2)
O10.044 (2)0.052 (2)0.0460 (19)0.003 (2)0.0148 (19)0.0070 (17)
O20.063 (3)0.079 (3)0.105 (3)0.011 (3)0.009 (3)0.012 (3)
O30.048 (2)0.0353 (19)0.0476 (18)0.0034 (19)0.0071 (18)0.0019 (15)
O40.129 (5)0.049 (3)0.149 (4)0.007 (3)0.079 (4)0.026 (3)
O50.062 (3)0.061 (2)0.0456 (19)0.000 (2)0.010 (2)0.0157 (18)
O60.158 (6)0.148 (6)0.105 (4)0.059 (5)0.057 (4)0.077 (4)
O70.058 (3)0.064 (3)0.081 (3)0.003 (2)0.023 (2)0.018 (2)
O80.061 (2)0.049 (2)0.054 (2)0.010 (2)0.007 (2)0.0110 (18)
O90.125 (4)0.062 (3)0.072 (3)0.010 (3)0.032 (3)0.006 (2)
O100.039 (2)0.054 (2)0.059 (2)0.004 (2)0.000 (2)0.0128 (19)
O110.055 (3)0.092 (4)0.144 (4)0.002 (3)0.022 (3)0.028 (4)
O120.062 (3)0.044 (2)0.0419 (18)0.002 (2)0.001 (2)0.0032 (16)
O130.086 (3)0.071 (3)0.088 (3)0.003 (3)0.034 (3)0.003 (2)
O1W0.212 (15)0.086 (8)0.174 (12)0.009 (10)0.013 (13)0.010 (8)
C10.041 (3)0.045 (3)0.036 (2)0.005 (3)0.007 (3)0.001 (2)
C20.051 (3)0.042 (3)0.039 (2)0.006 (3)0.005 (3)0.003 (2)
C30.062 (4)0.052 (3)0.034 (2)0.003 (3)0.001 (3)0.006 (2)
C40.061 (4)0.039 (3)0.041 (3)0.003 (3)0.014 (3)0.003 (2)
C50.054 (3)0.036 (3)0.036 (2)0.002 (3)0.001 (3)0.005 (2)
C60.053 (4)0.054 (3)0.041 (3)0.005 (3)0.008 (3)0.004 (3)
C70.061 (4)0.038 (3)0.039 (2)0.001 (3)0.000 (3)0.004 (2)
C80.049 (3)0.039 (3)0.034 (2)0.006 (3)0.000 (3)0.004 (2)
C90.038 (3)0.045 (3)0.037 (2)0.012 (3)0.001 (2)0.000 (2)
C100.031 (3)0.038 (3)0.040 (2)0.000 (2)0.003 (2)0.001 (2)
C110.041 (3)0.046 (3)0.050 (3)0.006 (3)0.003 (3)0.007 (2)
C120.047 (3)0.053 (3)0.040 (3)0.002 (3)0.000 (3)0.008 (2)
C130.052 (4)0.051 (3)0.041 (3)0.000 (3)0.003 (3)0.006 (2)
C140.047 (3)0.042 (3)0.036 (2)0.000 (3)0.006 (2)0.007 (2)
C150.051 (4)0.046 (3)0.050 (3)0.006 (3)0.008 (3)0.012 (2)
C160.055 (4)0.056 (3)0.041 (3)0.015 (3)0.001 (3)0.006 (3)
C170.069 (4)0.068 (4)0.066 (4)0.017 (4)0.000 (4)0.012 (3)
C180.091 (5)0.063 (4)0.044 (3)0.006 (4)0.023 (3)0.002 (3)
C190.049 (4)0.054 (3)0.052 (3)0.001 (3)0.016 (3)0.011 (3)
C200.036 (3)0.041 (3)0.041 (2)0.007 (3)0.003 (3)0.002 (2)
C210.032 (3)0.085 (4)0.069 (4)0.004 (3)0.003 (3)0.003 (3)
C220.051 (4)0.086 (5)0.052 (3)0.013 (4)0.012 (3)0.020 (3)
C230.072 (5)0.096 (5)0.099 (5)0.018 (4)0.035 (4)0.026 (4)
C240.054 (4)0.041 (3)0.060 (3)0.003 (3)0.008 (3)0.007 (3)
C250.052 (3)0.047 (3)0.056 (3)0.005 (3)0.001 (3)0.001 (3)
C260.067 (4)0.054 (3)0.061 (3)0.007 (3)0.011 (4)0.003 (3)
C270.073 (5)0.082 (5)0.067 (4)0.007 (4)0.021 (4)0.000 (4)
C280.081 (5)0.085 (5)0.076 (4)0.023 (5)0.016 (4)0.017 (4)
C290.082 (5)0.057 (4)0.107 (5)0.023 (4)0.005 (5)0.019 (4)
C300.085 (5)0.047 (4)0.096 (4)0.003 (4)0.016 (5)0.005 (3)
C310.086 (5)0.065 (4)0.073 (4)0.005 (5)0.007 (4)0.025 (4)
C320.102 (6)0.079 (5)0.095 (5)0.002 (5)0.018 (5)0.050 (4)
C330.071 (5)0.052 (4)0.077 (4)0.018 (4)0.030 (4)0.015 (4)
C340.100 (6)0.087 (5)0.110 (5)0.033 (5)0.021 (5)0.024 (4)
C350.039 (4)0.055 (4)0.072 (4)0.000 (3)0.002 (3)0.007 (3)
C360.060 (4)0.104 (5)0.096 (5)0.017 (4)0.010 (4)0.024 (4)
C370.063 (4)0.055 (4)0.048 (3)0.009 (4)0.001 (3)0.008 (3)
C380.073 (5)0.047 (3)0.045 (3)0.002 (4)0.005 (3)0.012 (3)
C390.097 (6)0.066 (4)0.065 (4)0.002 (5)0.004 (4)0.008 (3)
C400.136 (8)0.060 (5)0.105 (6)0.011 (6)0.009 (6)0.017 (4)
C410.148 (10)0.061 (5)0.135 (8)0.020 (6)0.022 (7)0.017 (5)
C420.103 (6)0.071 (5)0.124 (6)0.016 (5)0.016 (6)0.007 (5)
C430.077 (5)0.054 (4)0.085 (4)0.003 (4)0.008 (4)0.006 (3)
Geometric parameters (Å, º) top
N1—C211.450 (7)C14—H140.9800
N1—C201.461 (6)C15—C161.487 (7)
N1—C61.486 (6)C15—H15A0.9700
O1—C221.334 (7)C15—H15B0.9700
O1—C11.460 (5)C16—C171.322 (7)
O2—C221.227 (8)C17—H17A0.9300
O3—C241.338 (6)C17—H17B0.9300
O3—C21.454 (6)C18—H18A0.9600
O4—C241.203 (6)C18—H18B0.9600
O5—C311.344 (7)C18—H18C0.9600
O5—C31.464 (6)C19—H190.9300
O6—C311.188 (8)C20—H200.9800
O7—C191.207 (6)C21—H21A0.9600
O8—C331.388 (7)C21—H21B0.9600
O8—C71.440 (6)C21—H21C0.9600
O9—C331.174 (8)C22—C231.482 (9)
O10—C351.320 (7)C23—H23A0.9600
O10—C111.459 (6)C23—H23B0.9600
O11—C351.207 (7)C23—H23C0.9600
O12—C371.355 (7)C24—C251.484 (7)
O12—C131.442 (6)C25—C261.366 (7)
O13—C371.196 (7)C25—C301.413 (7)
O1W—H1A0.8898C26—C271.369 (8)
O1W—H1B0.9036C26—H260.9300
C1—C101.521 (6)C27—C281.396 (9)
C1—C21.526 (6)C27—H270.9300
C1—H10.9800C28—C291.341 (9)
C2—C31.518 (7)C28—H280.9300
C2—H20.9800C29—C301.362 (9)
C3—C41.528 (7)C29—H290.9300
C3—H30.9800C30—H300.9300
C4—C191.518 (8)C31—C321.452 (9)
C4—C181.530 (7)C32—H32A0.9600
C4—C51.560 (7)C32—H32B0.9600
C5—C61.526 (7)C32—H32C0.9600
C5—C101.568 (6)C33—C341.492 (10)
C5—H50.9800C34—H34A0.9600
C6—C71.526 (7)C34—H34B0.9600
C6—H60.9800C34—H34C0.9600
C7—C81.529 (7)C35—C361.444 (8)
C7—H70.9800C36—H36A0.9600
C8—C151.522 (6)C36—H36B0.9600
C8—C91.549 (7)C36—H36C0.9600
C8—C141.565 (7)C37—C381.487 (8)
C9—C111.558 (7)C38—C391.372 (8)
C9—C101.581 (6)C38—C431.377 (8)
C9—H90.9800C39—C401.418 (9)
C10—C201.567 (6)C39—H390.9300
C11—C121.533 (7)C40—C411.349 (12)
C11—H110.9800C40—H400.9300
C12—C131.513 (8)C41—C421.383 (11)
C12—C161.525 (7)C41—H410.9300
C12—H120.9800C42—C431.400 (9)
C13—C141.539 (7)C42—H420.9300
C13—H130.9800C43—H430.9300
C14—C201.524 (6)
C21—N1—C20118.4 (4)C16—C17—H17A120.0
C21—N1—C6120.1 (4)C16—C17—H17B120.0
C20—N1—C6103.9 (4)H17A—C17—H17B120.0
C22—O1—C1118.8 (4)C4—C18—H18A109.5
C24—O3—C2118.4 (4)C4—C18—H18B109.5
C31—O5—C3119.2 (5)H18A—C18—H18B109.5
C33—O8—C7115.2 (4)C4—C18—H18C109.5
C35—O10—C11116.6 (4)H18A—C18—H18C109.5
C37—O12—C13116.4 (4)H18B—C18—H18C109.5
H1A—O1W—H1B117.6O7—C19—C4123.0 (5)
O1—C1—C10103.7 (4)O7—C19—H19118.5
O1—C1—C2105.7 (3)C4—C19—H19118.5
C10—C1—C2115.4 (4)N1—C20—C14110.3 (4)
O1—C1—H1110.5N1—C20—C10102.9 (4)
C10—C1—H1110.5C14—C20—C10105.0 (4)
C2—C1—H1110.5N1—C20—H20112.7
O3—C2—C3111.5 (4)C14—C20—H20112.7
O3—C2—C1106.8 (3)C10—C20—H20112.7
C3—C2—C1110.3 (4)N1—C21—H21A109.5
O3—C2—H2109.4N1—C21—H21B109.5
C3—C2—H2109.4H21A—C21—H21B109.5
C1—C2—H2109.4N1—C21—H21C109.5
O5—C3—C2107.9 (4)H21A—C21—H21C109.5
O5—C3—C4107.5 (4)H21B—C21—H21C109.5
C2—C3—C4117.5 (4)O2—C22—O1122.4 (6)
O5—C3—H3107.9O2—C22—C23126.0 (7)
C2—C3—H3107.9O1—C22—C23111.7 (6)
C4—C3—H3107.9C22—C23—H23A109.5
C19—C4—C3109.3 (5)C22—C23—H23B109.5
C19—C4—C18109.3 (5)H23A—C23—H23B109.5
C3—C4—C18108.2 (4)C22—C23—H23C109.5
C19—C4—C5113.2 (4)H23A—C23—H23C109.5
C3—C4—C5109.3 (4)H23B—C23—H23C109.5
C18—C4—C5107.4 (4)O4—C24—O3122.9 (5)
C6—C5—C4107.9 (4)O4—C24—C25124.9 (5)
C6—C5—C1099.2 (3)O3—C24—C25112.3 (5)
C4—C5—C10117.3 (4)C26—C25—C30118.4 (6)
C6—C5—H5110.6C26—C25—C24123.3 (5)
C4—C5—H5110.6C30—C25—C24118.3 (5)
C10—C5—H5110.6C25—C26—C27121.7 (6)
N1—C6—C596.3 (4)C25—C26—H26119.1
N1—C6—C7112.6 (4)C27—C26—H26119.1
C5—C6—C7111.5 (4)C26—C27—C28118.3 (6)
N1—C6—H6111.9C26—C27—H27120.8
C5—C6—H6111.9C28—C27—H27120.8
C7—C6—H6111.9C29—C28—C27121.0 (7)
O8—C7—C6110.7 (4)C29—C28—H28119.5
O8—C7—C8109.1 (3)C27—C28—H28119.5
C6—C7—C8112.1 (4)C28—C29—C30120.8 (6)
O8—C7—H7108.2C28—C29—H29119.6
C6—C7—H7108.2C30—C29—H29119.6
C8—C7—H7108.2C29—C30—C25119.7 (6)
C15—C8—C7112.9 (4)C29—C30—H30120.1
C15—C8—C9114.3 (4)C25—C30—H30120.1
C7—C8—C9106.9 (3)O6—C31—O5121.3 (7)
C15—C8—C14112.4 (4)O6—C31—C32126.6 (7)
C7—C8—C14111.7 (4)O5—C31—C32112.2 (7)
C9—C8—C1497.5 (4)C31—C32—H32A109.5
C8—C9—C11105.2 (4)C31—C32—H32B109.5
C8—C9—C10101.3 (4)H32A—C32—H32B109.5
C11—C9—C10123.4 (4)C31—C32—H32C109.5
C8—C9—H9108.6H32A—C32—H32C109.5
C11—C9—H9108.6H32B—C32—H32C109.5
C10—C9—H9108.6O9—C33—O8122.9 (6)
C1—C10—C20118.1 (4)O9—C33—C34126.7 (6)
C1—C10—C5111.2 (4)O8—C33—C34110.4 (6)
C20—C10—C5102.8 (4)C33—C34—H34A109.5
C1—C10—C9114.3 (4)C33—C34—H34B109.5
C20—C10—C9103.7 (4)H34A—C34—H34B109.5
C5—C10—C9105.2 (4)C33—C34—H34C109.5
O10—C11—C12110.0 (4)H34A—C34—H34C109.5
O10—C11—C9113.6 (4)H34B—C34—H34C109.5
C12—C11—C9111.0 (4)O11—C35—O10122.4 (6)
O10—C11—H11107.3O11—C35—C36124.1 (6)
C12—C11—H11107.3O10—C35—C36113.4 (6)
C9—C11—H11107.3C35—C36—H36A109.5
C13—C12—C16105.4 (4)C35—C36—H36B109.5
C13—C12—C11111.5 (4)H36A—C36—H36B109.5
C16—C12—C11106.4 (4)C35—C36—H36C109.5
C13—C12—H12111.1H36A—C36—H36C109.5
C16—C12—H12111.1H36B—C36—H36C109.5
C11—C12—H12111.1O13—C37—O12122.4 (6)
O12—C13—C12107.5 (4)O13—C37—C38125.2 (6)
O12—C13—C14112.9 (4)O12—C37—C38112.5 (6)
C12—C13—C14109.7 (4)C39—C38—C43120.2 (6)
O12—C13—H13108.9C39—C38—C37117.5 (6)
C12—C13—H13108.9C43—C38—C37122.2 (6)
C14—C13—H13108.9C38—C39—C40119.6 (7)
C20—C14—C13114.2 (4)C38—C39—H39120.2
C20—C14—C8100.8 (3)C40—C39—H39120.2
C13—C14—C8110.5 (4)C41—C40—C39119.1 (8)
C20—C14—H14110.3C41—C40—H40120.4
C13—C14—H14110.3C39—C40—H40120.4
C8—C14—H14110.3C40—C41—C42122.4 (8)
C16—C15—C8109.9 (4)C40—C41—H41118.8
C16—C15—H15A109.7C42—C41—H41118.8
C8—C15—H15A109.7C41—C42—C43118.0 (8)
C16—C15—H15B109.7C41—C42—H42121.0
C8—C15—H15B109.7C43—C42—H42121.0
H15A—C15—H15B108.2C38—C43—C42120.6 (7)
C17—C16—C15127.0 (6)C38—C43—H43119.7
C17—C16—C12120.8 (5)C42—C43—H43119.7
C15—C16—C12111.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O11i0.892.383.205 (15)155
O1W—H1B···O60.902.393.208 (15)151
C15—H15A···O4ii0.972.483.359 (8)150
C23—H23B···O1W0.962.583.491 (17)159
C29—H29···O7iii0.932.403.290 (8)160
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC43H46NO13·0.5H2O
Mr793.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)11.517 (3), 18.045 (4), 19.241 (4)
V3)3998.7 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.52 × 0.46 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4333, 4092, 2220
Rint0.007
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.00
No. of reflections4092
No. of parameters530
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O11i0.892.383.205 (15)155
O1W—H1B···O60.902.393.208 (15)151
C15—H15A···O4ii0.972.483.359 (8)150
C23—H23B···O1W0.962.583.491 (17)159
C29—H29···O7iii0.932.403.290 (8)160
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

This project was supported by grants from the Department of Science and Technology of Sichuan Province, China (grant No. 05JY029), and the Scientific Research Fund of Leshan Teachers' College, China (grant No. Z07061).

References

First citationDeng, Y. P., Chen, D. H. & Sun, W. L. (1992). Acta Chim. Sinica, 50, 822–826.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. Abstract PA104. American Crystallographic Association Meeting, Pittsburgh, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds