metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(2-amino-1,3-thia­zole-4-acetato-κ2O,N3)nickel(II)

aCollege of Mechanical & Materials Engineering, Functional Materials Research Institute, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 27 April 2009; accepted 13 May 2009; online 20 May 2009)

In the crystal structure of the title compound, [Ni(C5H5N2O2S)2(H2O)], the NiII cation is located on a twofold rotation axis and chelated by two 2-amino-1,3-thia­zole-4-acetate (ata) anions in the basal coordination plane; a water mol­ecule located on the same twofold rotation axis completes the distorted square-pyramidal coordination geometry. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonding, as well as ππ stacking between parallel thia­zole rings [centroid–centroid distance 3.531 (8) Å], helps to stabilize the crystal structure.

Related literature

For general background to the potential use of discrete and polymeric metal-organic complexes as functional materials in catalysis, mol­ecular recognition, separation and non-linear optics, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Han et al. (2008[Han, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. III (2008). J. Am. Chem. Soc. 130, 11580-11581.]); Wu et al. (2001[Wu, Z.-Y., Xu, D.-J. & Feng, Z.-X. (2001). Polyhedron, 20, 281-284.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H5N2O2S)2(H2O)]

  • Mr = 391.07

  • Monoclinic, C 2/c

  • a = 12.0875 (12) Å

  • b = 9.1278 (9) Å

  • c = 12.7715 (12) Å

  • β = 95.1190 (10)°

  • V = 1403.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.904

  • 3487 measured reflections

  • 1231 independent reflections

  • 1119 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.01

  • 1231 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0243 (15)
Ni1—O3 1.999 (2)
Ni1—N2 2.0465 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.10 2.816 (3) 140
N1—H1B⋯O2ii 0.86 1.99 2.839 (3) 170
O3—H3⋯O2iii 0.82 1.94 2.7211 (19) 158
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of novel discrete and polymeric metal-organic complexes have attracted intense interest owing to the realisation of their potential for use as functional materials in catalysis, molecular recognition, separation, and nonlinear optics (Batten & Robson, 1998; Fujita et al., 1994). As for the construction of these inorganic/organic hybrid materials, carboxylate ligands have proven to be an efficacious choice (Wu et al., 2001). The employment of multifunctional ligands bearing both anionic and neutral donor atoms, such as nicotinate, isonicotinate, and various pyridinedicarboxylates, has resulted in the preparation of many functional coordination polymers, some with intriguing optical or gas sorption properties (Han et al., 2008). Herein we report the hydrothermal synthesis, structural characterization of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The NiII ion is located on a twofold rotation axis and has a slightly distorted square-pyramidal geometry formed by two oxygen atoms, two nitrogen atoms from ata ligands and one coordinated water molecules (Table 1). The amido N atoms forms N—H···O hydrogen bonds with carboxylate O atoms, linking the molecules into one dimentional chains, which are then linked into a two-dimensional sheet by aromatic π-π stacking between S1-thiazole and S1i-thiazole [symmetry code: (i) -x, 1 - y, 1 - z] rings [centroid–centroid distance 3.531 (8) Å]. Furthermore, the two-dimensional layers are extended to a three-dimensional supramolecular structure by O—H···O hydrogen bonds (Table 2).

Related literature top

For general background to the potential use of discrete and polymeric metal-organic complexes as functional materials in catalysis, molecular recognition, separation and non-linear optics, see: Batten & Robson (1998); Fujita et al. (1994); Han et al. (2008); Wu et al. (2001).

Experimental top

A mixture of Ni(CH3COOH)2.4H2O (0.025 g, 0.1 mmol), 2-amino-4-thiazoleacetic acid (0.0316 g, 0.2 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The pH value of the mixture was adjusted to 6 by a aqueous solution of NaOH (0.1 mol/L), and then heated at 393 K for 3 d. Green crystals were obtained on cooling to room temperature.

Refinement top

H atoms were placed in calculated positions and treated using a riding-model approximation with C—H = 0.93, with Uiso(H) = 1.2Ueq(C); O—H = 0.82 and N—H = 0.86 Å, Uiso(H)=1.5Ueq(O,N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with thermal ellipsoids plotted at 50% probability [symmetry code: (i) -x, y, -z + 1/2].
Aquabis(2-amino-1,3-thiazole-4-acetato-κ2O,N3)nickel(II) top
Crystal data top
[Ni(C5H5N2O2S)2(H2O)]F(000) = 800
Mr = 391.07Dx = 1.851 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2106 reflections
a = 12.0875 (12) Åθ = 2.8–25.0°
b = 9.1278 (9) ŵ = 1.71 mm1
c = 12.7715 (12) ÅT = 293 K
β = 95.119 (1)°Prism, green
V = 1403.5 (2) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1231 independent reflections
Radiation source: fine-focus sealed tube1119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
CCD Profile fitting scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.821, Tmax = 0.904k = 510
3487 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2 + 2.301P]
where P = (Fo2 + 2Fc2)/3
1231 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(C5H5N2O2S)2(H2O)]V = 1403.5 (2) Å3
Mr = 391.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.0875 (12) ŵ = 1.71 mm1
b = 9.1278 (9) ÅT = 293 K
c = 12.7715 (12) Å0.12 × 0.10 × 0.06 mm
β = 95.119 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1231 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1119 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.904Rint = 0.014
3487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
1231 reflectionsΔρmin = 0.29 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.69428 (4)0.25000.02321 (14)
N10.10680 (18)0.7919 (2)0.49121 (17)0.0423 (6)
H1A0.14280.79760.43630.051*
H1B0.13410.82970.54960.051*
N20.04038 (14)0.6630 (2)0.40062 (14)0.0264 (4)
O10.16405 (12)0.68137 (17)0.20264 (12)0.0314 (4)
O20.33123 (12)0.5835 (2)0.19153 (12)0.0369 (4)
O30.00000.9133 (2)0.25000.0401 (6)
H30.05700.94330.22700.060*
C10.23701 (16)0.5998 (2)0.23761 (16)0.0254 (5)
C20.20703 (19)0.5149 (3)0.33761 (18)0.0336 (5)
H2A0.27510.48200.36500.040*
H2B0.16570.42830.32040.040*
C30.00918 (19)0.7248 (3)0.48595 (17)0.0295 (5)
C40.14006 (17)0.5971 (2)0.42235 (17)0.0280 (5)
C50.16604 (19)0.6117 (3)0.52138 (18)0.0364 (6)
H50.22990.57390.54680.044*
S10.06560 (5)0.71004 (8)0.59589 (5)0.03934 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0186 (2)0.0286 (2)0.0224 (2)0.0000.00139 (15)0.000
N10.0395 (12)0.0586 (15)0.0285 (11)0.0167 (11)0.0017 (9)0.0117 (10)
N20.0241 (9)0.0319 (10)0.0229 (9)0.0007 (8)0.0009 (7)0.0001 (8)
O10.0225 (8)0.0422 (9)0.0291 (9)0.0047 (7)0.0005 (6)0.0090 (7)
O20.0217 (8)0.0551 (11)0.0327 (9)0.0077 (7)0.0033 (6)0.0127 (8)
O30.0262 (12)0.0300 (12)0.0666 (17)0.0000.0190 (12)0.000
C10.0217 (11)0.0292 (11)0.0252 (11)0.0004 (9)0.0016 (9)0.0006 (9)
C20.0290 (11)0.0352 (13)0.0354 (13)0.0065 (10)0.0038 (10)0.0099 (11)
C30.0294 (12)0.0343 (13)0.0246 (12)0.0031 (10)0.0014 (9)0.0006 (10)
C40.0239 (10)0.0314 (12)0.0281 (12)0.0023 (9)0.0004 (9)0.0071 (10)
C50.0278 (12)0.0504 (15)0.0311 (13)0.0004 (11)0.0039 (10)0.0096 (12)
S10.0384 (4)0.0570 (4)0.0230 (3)0.0039 (3)0.0044 (3)0.0030 (3)
Geometric parameters (Å, º) top
Ni1—O12.0243 (15)O2—C11.243 (3)
Ni1—O1i2.0243 (15)O3—H30.8200
Ni1—O31.999 (2)C1—C21.510 (3)
Ni1—N22.0465 (18)C2—C41.494 (3)
Ni1—N2i2.0465 (18)C2—H2A0.9700
N1—C31.326 (3)C2—H2B0.9700
N1—H1A0.8600C3—S11.742 (2)
N1—H1B0.8600C4—C51.337 (3)
N2—C31.322 (3)C5—S11.726 (3)
N2—C41.397 (3)C5—H50.9300
O1—C11.266 (3)
O3—Ni1—O193.34 (5)O2—C1—C2118.64 (19)
O3—Ni1—O1i93.34 (5)O1—C1—C2118.57 (18)
O1—Ni1—O1i173.33 (9)C4—C2—C1115.36 (19)
O3—Ni1—N298.02 (5)C4—C2—H2A108.4
O1—Ni1—N287.90 (7)C1—C2—H2A108.4
O1i—Ni1—N291.17 (7)C4—C2—H2B108.4
O3—Ni1—N2i98.02 (5)C1—C2—H2B108.4
O1—Ni1—N2i91.17 (7)H2A—C2—H2B107.5
O1i—Ni1—N2i87.90 (7)N2—C3—N1125.1 (2)
N2—Ni1—N2i163.96 (11)N2—C3—S1113.70 (17)
C3—N1—H1A120.0N1—C3—S1121.23 (17)
C3—N1—H1B120.0C5—C4—N2115.1 (2)
H1A—N1—H1B120.0C5—C4—C2125.3 (2)
C3—N2—C4110.83 (19)N2—C4—C2119.58 (19)
C3—N2—Ni1125.93 (16)C4—C5—S1111.14 (18)
C4—N2—Ni1121.96 (14)C4—C5—H5124.4
C1—O1—Ni1128.58 (14)S1—C5—H5124.4
Ni1—O3—H3109.5C5—S1—C389.19 (11)
O2—C1—O1122.8 (2)
O3—Ni1—N2—C350.65 (19)C4—N2—C3—N1177.7 (2)
O1—Ni1—N2—C3143.73 (19)Ni1—N2—C3—N115.1 (3)
O1i—Ni1—N2—C342.88 (19)C4—N2—C3—S11.8 (2)
N2i—Ni1—N2—C3129.35 (19)Ni1—N2—C3—S1165.31 (11)
O3—Ni1—N2—C4115.15 (16)C3—N2—C4—C51.4 (3)
O1—Ni1—N2—C422.08 (17)Ni1—N2—C4—C5166.37 (17)
O1i—Ni1—N2—C4151.32 (17)C3—N2—C4—C2177.3 (2)
N2i—Ni1—N2—C464.85 (16)Ni1—N2—C4—C215.0 (3)
O3—Ni1—O1—C1135.01 (18)C1—C2—C4—C5126.8 (3)
N2—Ni1—O1—C137.09 (19)C1—C2—C4—N254.7 (3)
N2i—Ni1—O1—C1126.88 (19)N2—C4—C5—S10.3 (3)
Ni1—O1—C1—O2167.76 (16)C2—C4—C5—S1178.27 (18)
Ni1—O1—C1—C210.2 (3)C4—C5—S1—C30.6 (2)
O2—C1—C2—C4140.5 (2)N2—C3—S1—C51.44 (19)
O1—C1—C2—C441.5 (3)N1—C3—S1—C5178.2 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.816 (3)140
N1—H1B···O2ii0.861.992.839 (3)170
O3—H3···O2iii0.821.942.7211 (19)158
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C5H5N2O2S)2(H2O)]
Mr391.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.0875 (12), 9.1278 (9), 12.7715 (12)
β (°) 95.119 (1)
V3)1403.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.821, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
3487, 1231, 1119
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.01
No. of reflections1231
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.0243 (15)Ni1—N22.0465 (18)
Ni1—O31.999 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.816 (3)140.1
N1—H1B···O2ii0.861.992.839 (3)169.6
O3—H3···O2iii0.821.942.7211 (19)158
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Natural Science Foundation of Hubei Province of China (2008CDB030) and the Important Project of Hubei Provincial Education Office (Z20091301).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHan, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. III (2008). J. Am. Chem. Soc. 130, 11580–11581.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-Y., Xu, D.-J. & Feng, Z.-X. (2001). Polyhedron, 20, 281–284.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds