organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(4-Acetyl­phenyl)­amino­methyl­ene]-2,2-di­methyl-1,3-dioxane-4,6-dione

aState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China, and bState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
*Correspondence e-mail: lirui@scu.edu.cn

(Received 3 May 2009; accepted 8 May 2009; online 14 May 2009)

In the title compound, C15H15NO5, the six-membered dioxane ring assumes an envelope conformation with the dimethyl substituted C atom as the flap atom. An intra­molecular N—H⋯O inter­action is also present. In the crystal structure the mol­ecules are linked via C—H⋯O hydrogen bonds into supra­molecular chains along the b axis.

Related literature

For the biological activity of 4(1H)-quinolone structures, see: Ruchelman et al. (2003[Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.]). 5-Aryl­amino­methyl­ene-2,2-dimethyl-1,3-dioxane-4,6-diones are key inter­mediates in the synthesis of 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO5

  • Mr = 289.28

  • Triclinic, [P \overline 1]

  • a = 7.102 (3) Å

  • b = 7.356 (4) Å

  • c = 13.856 (4) Å

  • α = 82.79 (4)°

  • β = 83.19 (4)°

  • γ = 86.03 (4)°

  • V = 712.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.44 × 0.36 × 0.32 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2894 measured reflections

  • 2621 independent reflections

  • 1399 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 100 reflections intensity decay: 1.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.179

  • S = 1.03

  • 2621 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.84 (4) 2.05 (3) 2.699 (3) 133 (2)
C1—H1B⋯O3i 0.96 2.57 3.480 (4) 158
C9—H9⋯O5i 0.93 2.59 3.429 (4) 150
Symmetry code: (i) x, y-1, z.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 4(1H)quinolone structure plays an extremely important role in the field of pharmaceutical chemistry. These compounds have been used as precursors for anticancer agents, anti-malarial agents and reversible (H+/K+) ATPase inhibitors (Ruchelman et al., 2003). 5-Arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-diones are the key intermediates which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985).

The molecular structure is shown in Fig. 1. The six membered dioxane ring assumes an envelope conformation. The imino group links with the adjacent O atom via O—H···O hydrogen bonding. In the crystal structure the molecules are linked via C—H···O hydrogen bonding into one dimensional supra-molecualr chain along the b axis (Table 1).

Related literature top

For the biological activity 4(1H)quinolone structures, see: Ruchelman et al. (2003). 5-Arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-diones are key intermediates in the synthesis of 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985).

Experimental top

A methanol solution (50 ml) of Meldrum's acid (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 2 h, then the arylamine (1.35 g, 0.01 mol) was added into the above solution. The mixture was heated under reflux for another 8 h and then filtered. Single crystals were obtained from the filtrate after 2 d.

Refinement top

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
5-[(4-Acetylphenyl)aminomethylene]-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C15H15NO5Z = 2
Mr = 289.28F(000) = 304
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.102 (3) ÅCell parameters from 25 reflections
b = 7.356 (4) Åθ = 4.4–7.4°
c = 13.856 (4) ŵ = 0.10 mm1
α = 82.79 (4)°T = 292 K
β = 83.19 (4)°Block, colourless
γ = 86.03 (4)°0.44 × 0.36 × 0.32 mm
V = 712.0 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.5°
Graphite monochromatorh = 88
ω/2θ scansk = 38
2894 measured reflectionsl = 1616
2621 independent reflections3 standard reflections every 100 reflections
1399 reflections with I > 2σ(I) intensity decay: 1.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0987P)2]
where P = (Fo2 + 2Fc2)/3
2621 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H15NO5γ = 86.03 (4)°
Mr = 289.28V = 712.0 (5) Å3
Triclinic, P1Z = 2
a = 7.102 (3) ÅMo Kα radiation
b = 7.356 (4) ŵ = 0.10 mm1
c = 13.856 (4) ÅT = 292 K
α = 82.79 (4)°0.44 × 0.36 × 0.32 mm
β = 83.19 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
2894 measured reflections3 standard reflections every 100 reflections
2621 independent reflections intensity decay: 1.8%
1399 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
2621 reflectionsΔρmin = 0.34 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4606 (3)0.5224 (2)0.87501 (13)0.0548 (6)
O20.4847 (3)0.3153 (3)0.75537 (13)0.0585 (6)
O30.5363 (3)0.8104 (3)0.83800 (15)0.0713 (7)
O40.5696 (3)0.4044 (3)0.60005 (14)0.0688 (7)
O50.9300 (3)1.4570 (3)0.25900 (17)0.0767 (7)
N10.6950 (3)0.7445 (3)0.54722 (17)0.0485 (6)
H1N0.674 (4)0.644 (5)0.528 (2)0.066 (9)*
C10.3511 (5)0.2250 (4)0.9154 (2)0.0677 (9)
H1A0.36050.22860.98360.101*
H1B0.36740.10030.90100.101*
H1C0.22840.27540.89990.101*
C20.6988 (5)0.2750 (5)0.8795 (2)0.0708 (9)
H2A0.78940.34720.83710.106*
H2B0.72360.14780.87060.106*
H2C0.70940.29100.94630.106*
C30.5022 (4)0.3356 (4)0.8554 (2)0.0504 (7)
C40.5331 (4)0.6609 (4)0.8097 (2)0.0503 (7)
C50.5861 (4)0.6195 (3)0.71100 (18)0.0440 (6)
C60.5512 (4)0.4421 (4)0.6835 (2)0.0486 (7)
C70.6522 (4)0.7568 (3)0.64119 (19)0.0443 (7)
H70.66810.86920.66250.053*
C80.7584 (4)0.8835 (4)0.47359 (19)0.0443 (7)
C90.8222 (4)0.8338 (4)0.3821 (2)0.0561 (8)
H90.82620.71130.37110.067*
C100.8804 (4)0.9674 (4)0.3063 (2)0.0562 (8)
H100.92330.93370.24470.067*
C110.8752 (4)1.1500 (4)0.3217 (2)0.0475 (7)
C120.8132 (4)1.1971 (4)0.4143 (2)0.0510 (7)
H120.81131.31920.42560.061*
C130.7541 (4)1.0661 (4)0.4903 (2)0.0491 (7)
H130.71181.09980.55210.059*
C140.9294 (4)1.2990 (4)0.2415 (2)0.0558 (8)
C150.9783 (5)1.2522 (5)0.1391 (2)0.0731 (10)
H15A1.00421.36220.09580.110*
H15B0.87351.19540.11950.110*
H15C1.08851.16900.13650.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0800 (14)0.0361 (11)0.0476 (11)0.0014 (9)0.0018 (10)0.0097 (9)
O20.0936 (15)0.0361 (11)0.0467 (11)0.0137 (10)0.0013 (10)0.0087 (9)
O30.125 (2)0.0320 (11)0.0598 (12)0.0023 (11)0.0121 (12)0.0163 (9)
O40.1213 (19)0.0381 (11)0.0475 (12)0.0173 (12)0.0040 (11)0.0130 (9)
O50.0993 (18)0.0370 (13)0.0893 (17)0.0106 (11)0.0019 (13)0.0012 (11)
N10.0641 (16)0.0299 (13)0.0525 (15)0.0091 (11)0.0043 (12)0.0071 (11)
C10.087 (2)0.056 (2)0.0591 (19)0.0135 (17)0.0026 (17)0.0095 (16)
C20.078 (2)0.053 (2)0.078 (2)0.0051 (16)0.0068 (18)0.0021 (16)
C30.071 (2)0.0296 (14)0.0505 (16)0.0001 (13)0.0032 (14)0.0068 (12)
C40.0647 (19)0.0389 (16)0.0488 (16)0.0057 (13)0.0135 (14)0.0092 (13)
C50.0512 (16)0.0371 (15)0.0455 (15)0.0007 (12)0.0106 (13)0.0086 (12)
C60.0670 (19)0.0346 (15)0.0435 (16)0.0027 (13)0.0018 (13)0.0065 (12)
C70.0527 (16)0.0300 (14)0.0525 (17)0.0017 (12)0.0121 (13)0.0086 (12)
C80.0449 (16)0.0374 (15)0.0520 (16)0.0071 (12)0.0067 (12)0.0067 (12)
C90.069 (2)0.0416 (16)0.0597 (18)0.0133 (14)0.0005 (15)0.0137 (14)
C100.0639 (19)0.0526 (19)0.0525 (17)0.0094 (15)0.0036 (14)0.0140 (14)
C110.0434 (16)0.0431 (16)0.0548 (17)0.0042 (12)0.0029 (13)0.0029 (13)
C120.0608 (19)0.0312 (14)0.0611 (18)0.0040 (12)0.0069 (14)0.0048 (13)
C130.0588 (18)0.0377 (15)0.0518 (16)0.0021 (13)0.0048 (13)0.0129 (13)
C140.0464 (17)0.0531 (19)0.066 (2)0.0003 (14)0.0062 (14)0.0001 (15)
C150.083 (2)0.063 (2)0.065 (2)0.0021 (18)0.0077 (18)0.0072 (16)
Geometric parameters (Å, º) top
O1—C41.361 (3)C5—C71.374 (4)
O1—C31.438 (3)C5—C61.450 (4)
O2—C61.342 (3)C7—H70.9300
O2—C31.434 (3)C8—C91.380 (4)
O3—C41.216 (3)C8—C131.389 (4)
O4—C61.212 (3)C9—C101.390 (4)
O5—C141.217 (3)C9—H90.9300
N1—C71.315 (3)C10—C111.383 (4)
N1—C81.408 (3)C10—H100.9300
N1—H1N0.85 (3)C11—C121.384 (4)
C1—C31.498 (4)C11—C141.495 (4)
C1—H1A0.9600C12—C131.383 (4)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—H130.9300
C2—C31.499 (4)C14—C151.497 (4)
C2—H2A0.9600C15—H15A0.9600
C2—H2B0.9600C15—H15B0.9600
C2—H2C0.9600C15—H15C0.9600
C4—C51.438 (3)
C4—O1—C3119.3 (2)O2—C6—C5117.1 (2)
C6—O2—C3120.1 (2)N1—C7—C5126.2 (2)
C7—N1—C8127.6 (2)N1—C7—H7116.9
C7—N1—H1N116 (2)C5—C7—H7116.9
C8—N1—H1N116 (2)C9—C8—C13120.2 (3)
C3—C1—H1A109.5C9—C8—N1117.8 (3)
C3—C1—H1B109.5C13—C8—N1122.0 (2)
H1A—C1—H1B109.5C8—C9—C10119.7 (3)
C3—C1—H1C109.5C8—C9—H9120.1
H1A—C1—H1C109.5C10—C9—H9120.1
H1B—C1—H1C109.5C11—C10—C9120.7 (3)
C3—C2—H2A109.5C11—C10—H10119.7
C3—C2—H2B109.5C9—C10—H10119.7
H2A—C2—H2B109.5C10—C11—C12118.8 (3)
C3—C2—H2C109.5C10—C11—C14122.5 (3)
H2A—C2—H2C109.5C12—C11—C14118.7 (3)
H2B—C2—H2C109.5C13—C12—C11121.3 (3)
O2—C3—O1111.4 (2)C13—C12—H12119.4
O2—C3—C1105.9 (2)C11—C12—H12119.4
O1—C3—C1106.4 (2)C12—C13—C8119.3 (3)
O2—C3—C2110.2 (2)C12—C13—H13120.4
O1—C3—C2109.4 (2)C8—C13—H13120.4
C1—C3—C2113.4 (3)O5—C14—C11120.4 (3)
O3—C4—O1117.5 (2)O5—C14—C15120.4 (3)
O3—C4—C5125.9 (3)C11—C14—C15119.2 (3)
O1—C4—C5116.5 (2)C14—C15—H15A109.5
C7—C5—C4118.8 (2)C14—C15—H15B109.5
C7—C5—C6120.4 (2)H15A—C15—H15B109.5
C4—C5—C6120.5 (2)C14—C15—H15C109.5
O4—C6—O2118.4 (2)H15A—C15—H15C109.5
O4—C6—C5124.5 (3)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.84 (4)2.05 (3)2.699 (3)133 (2)
C1—H1B···O3i0.962.573.480 (4)158
C9—H9···O5i0.932.593.429 (4)150
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H15NO5
Mr289.28
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.102 (3), 7.356 (4), 13.856 (4)
α, β, γ (°)82.79 (4), 83.19 (4), 86.03 (4)
V3)712.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.36 × 0.32
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2894, 2621, 1399
Rint0.008
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.179, 1.03
No. of reflections2621
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.84 (4)2.05 (3)2.699 (3)133 (2)
C1—H1B···O3i0.962.573.480 (4)158
C9—H9···O5i0.932.593.429 (4)150
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This research is financially supported by the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationRuchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds