metal-organic compounds
catena-Poly[[tetraaquanickel(II)]-μ3-benzene-1,3,5-tricarboxylato-3′:1:2-κ4O1:O3,O3′:O5-[tetraaquanickel(II)]-μ2-benzene-1,3,5-tricarboxylato-2:3κ2O1:O3-[tetraaquanickel(II)]]
aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw
The microwave solvothermal reaction of nickel nitrate with trimesic acid provided the title compound, [Ni3(BTC)2(H2O)12]n (BTC = benzene-1,3,5-tricarboxylate anion, C9H3O6), which is a metal coordination polymer composed of one-dimensional zigzag chains. The crystal under investigation was ramecically twinned with an approximate twin domain ratio of 1:1. In the there are two types of Ni atoms. One of the NiO6 groups (2 symmetry) is coordinated to only one carboxylate group and thus terminal, the other is bridging, forming the coordination polymer. The extended chains are connected by the organic BTC anions via μ2-linkages. O—H⋯O hydrogen bonds and π–π interactions between the chains [centroid–centroid distance 3.58 (1) Å] induce the complex to mimic a three-dimensional structure.
Related literature
For background information on the solvothermal synthesis of coordination polymers with organic carboxylate ligands, see: Kitagawa et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809016729/zl2190sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809016729/zl2190Isup2.hkl
The title complex was obtained from the reaction of 1,3,5-benzenetricarboxylic acid (C9H6O6, H3BTC, 0.421 g, 2 mmol), Ni(NO3)2.6H2O (0.8724 g, 3 mmol), ethanol (5.0 ml) and H2O (5.0 ml) with pH value of 2.15. The reaction mixture was heated to 453 K for 20 minutes using a microwave output power of 400 W. The title compound in the form of green crystals was collected in a yield of 0.0979 g (12.2%, based on carboxylic acid reagent).
The hydrogen atoms of benzene rings are placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The hydrogen atoms of water molecules were found in difference Fourier maps and were refined using distance constraints with O—H = 0.81 to 0.96 Å with Uiso(H) = 1.2 Ueq(O). Friedel pairs were not merged prior to
The value of the and its were determined by full-matrix least-squares using the TWIN/BASF commands in the SHELXTL program. It refined to 0.55 (1).Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids. [symmetry codes: (i) -x+1, y, -z; (ii) -x+2, y, -z+1]. | |
Fig. 2. The zigzag chains of the title compound with hydrogen bonding (blue dashed lines, H atoms are omitted). | |
Fig. 3. The packing diagram of zigzag chains with hydrogen bonding (blue dashed lines, H atoms are omitted). | |
Fig. 4. The side view of the layers with the pi-pi interactions (blue dashed lines, H atoms are omitted). |
[Ni3(C9H3O6)2(H2O)12] | F(000) = 828 |
Mr = 806.49 | Dx = 1.972 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 4802 reflections |
a = 17.3394 (10) Å | θ = 2.5–28.3° |
b = 12.8724 (7) Å | µ = 2.17 mm−1 |
c = 6.5462 (3) Å | T = 295 K |
β = 111.609 (2)° | Columnar, light-blue |
V = 1358.42 (12) Å3 | 0.25 × 0.18 × 0.15 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3299 independent reflections |
Radiation source: fine-focus sealed tube | 3156 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −23→22 |
Tmin = 0.613, Tmax = 0.737 | k = −16→17 |
6798 measured reflections | l = −7→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ^2^(Fo^2^) + (0.0363P)^2^] where P = (Fo^2^ + 2Fc^2^)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3299 reflections | Δρmax = 0.48 e Å−3 |
208 parameters | Δρmin = −0.38 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1531 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.549 (12) |
[Ni3(C9H3O6)2(H2O)12] | V = 1358.42 (12) Å3 |
Mr = 806.49 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 17.3394 (10) Å | µ = 2.17 mm−1 |
b = 12.8724 (7) Å | T = 295 K |
c = 6.5462 (3) Å | 0.25 × 0.18 × 0.15 mm |
β = 111.609 (2)° |
Bruker APEXII CCD diffractometer | 3299 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3156 reflections with I > 2σ(I) |
Tmin = 0.613, Tmax = 0.737 | Rint = 0.046 |
6798 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.068 | Δρmax = 0.48 e Å−3 |
S = 1.07 | Δρmin = −0.38 e Å−3 |
3299 reflections | Absolute structure: Flack (1983), 1531 Friedel pairs |
208 parameters | Absolute structure parameter: 0.549 (12) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.68238 (4) | 0.0000 | 0.02554 (13) | |
Ni2 | 0.757745 (18) | −0.02765 (2) | 0.22999 (5) | 0.01825 (9) | |
O1 | 0.56460 (12) | 0.54287 (15) | 0.1157 (3) | 0.0269 (4) | |
O2 | 0.58008 (19) | 0.7828 (2) | 0.1959 (5) | 0.0659 (10) | |
H2A | 0.5729 | 0.8177 | 0.2978 | 0.079* | |
H2B | 0.6113 | 0.8141 | 0.1460 | 0.079* | |
O3 | 0.44433 (15) | 0.68727 (18) | 0.2333 (4) | 0.0396 (5) | |
H3A | 0.4101 | 0.6382 | 0.2657 | 0.047* | |
H3B | 0.4382 | 0.7546 | 0.2822 | 0.047* | |
O4 | 0.83989 (12) | 0.08047 (16) | 0.4286 (3) | 0.0259 (4) | |
H4B | 0.8029 | 0.1274 | 0.4439 | 0.031* | |
H4C | 0.8708 | 0.0577 | 0.5683 | 0.031* | |
O5 | 0.67707 (12) | −0.13068 (15) | 0.0142 (3) | 0.0229 (4) | |
H5A | 0.7035 | −0.1838 | 0.0246 | 0.028* | |
H5B | 0.6543 | −0.1191 | −0.1354 | 0.028* | |
O6 | 0.77890 (12) | 0.03467 (16) | −0.0377 (3) | 0.0316 (5) | |
H6A | 0.7595 | 0.0949 | −0.0829 | 0.038* | |
H6B | 0.8290 | 0.0322 | −0.0698 | 0.038* | |
O7 | 0.85264 (11) | −0.12996 (14) | 0.3010 (3) | 0.0223 (4) | |
O8 | 0.65774 (12) | 0.06587 (15) | 0.1685 (3) | 0.0237 (4) | |
O9 | 0.73419 (13) | −0.09194 (17) | 0.4944 (3) | 0.0299 (5) | |
H9A | 0.6945 | −0.0832 | 0.5292 | 0.036* | |
H9B | 0.7453 | −0.1563 | 0.5346 | 0.036* | |
O10 | 0.71601 (12) | 0.21051 (15) | 0.3445 (3) | 0.0271 (4) | |
O11 | 0.78560 (12) | −0.27492 (14) | 0.1508 (3) | 0.0253 (4) | |
O12 | 0.93126 (13) | −0.61400 (16) | 0.4291 (4) | 0.0333 (5) | |
C1 | 0.92709 (16) | −0.3961 (2) | 0.3927 (4) | 0.0156 (5) | |
H1A | 0.8781 | −0.4324 | 0.3216 | 0.019* | |
C2 | 0.5000 | 0.1625 (3) | 0.0000 | 0.0159 (7) | |
H2C | 0.5000 | 0.0903 | 0.0000 | 0.019* | |
C3 | 1.0000 | −0.4499 (3) | 0.5000 | 0.0157 (7) | |
C4 | 1.0000 | −0.2341 (3) | 0.5000 | 0.0158 (6) | |
H4A | 1.0000 | −0.1618 | 0.5000 | 0.019* | |
C5 | 0.92667 (15) | −0.28782 (19) | 0.3907 (4) | 0.0149 (5) | |
C6 | 0.65536 (16) | 0.1604 (2) | 0.2156 (4) | 0.0178 (5) | |
C7 | 0.5000 | 0.3778 (3) | 0.0000 | 0.0163 (7) | |
C8 | 0.84852 (15) | −0.2270 (2) | 0.2722 (4) | 0.0159 (5) | |
C9 | 0.57403 (16) | 0.2158 (2) | 0.1077 (4) | 0.0159 (5) | |
C10 | 0.57306 (15) | 0.3237 (2) | 0.1084 (4) | 0.0167 (5) | |
H10A | 0.6218 | 0.3601 | 0.1821 | 0.020* | |
C11 | 0.5000 | 0.4925 (3) | 0.0000 | 0.0204 (8) | |
C12 | 1.0000 | −0.5673 (3) | 0.5000 | 0.0211 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0250 (3) | 0.0154 (2) | 0.0335 (3) | 0.000 | 0.0076 (2) | 0.000 |
Ni2 | 0.01496 (14) | 0.01230 (14) | 0.02472 (16) | 0.00137 (13) | 0.00407 (11) | 0.00049 (13) |
O1 | 0.0201 (10) | 0.0127 (9) | 0.0360 (11) | −0.0018 (8) | −0.0037 (9) | −0.0020 (8) |
O2 | 0.081 (2) | 0.065 (2) | 0.0751 (18) | −0.0546 (18) | 0.0557 (17) | −0.0443 (17) |
O3 | 0.0483 (14) | 0.0264 (11) | 0.0539 (13) | −0.0045 (11) | 0.0305 (11) | −0.0004 (11) |
O4 | 0.0207 (10) | 0.0182 (10) | 0.0317 (11) | 0.0019 (8) | 0.0013 (9) | −0.0023 (9) |
O5 | 0.0204 (9) | 0.0168 (10) | 0.0260 (9) | 0.0023 (7) | 0.0019 (8) | −0.0001 (8) |
O6 | 0.0284 (11) | 0.0259 (11) | 0.0450 (12) | 0.0085 (9) | 0.0187 (10) | 0.0130 (9) |
O7 | 0.0154 (9) | 0.0131 (9) | 0.0353 (11) | 0.0028 (7) | 0.0057 (8) | 0.0000 (8) |
O8 | 0.0203 (9) | 0.0134 (9) | 0.0345 (11) | 0.0048 (7) | 0.0068 (9) | −0.0024 (8) |
O9 | 0.0294 (11) | 0.0268 (11) | 0.0337 (10) | 0.0060 (9) | 0.0120 (9) | 0.0091 (8) |
O10 | 0.0203 (10) | 0.0203 (10) | 0.0335 (10) | 0.0044 (8) | 0.0013 (9) | −0.0056 (8) |
O11 | 0.0179 (9) | 0.0163 (9) | 0.0327 (10) | 0.0029 (7) | −0.0014 (8) | −0.0047 (8) |
O12 | 0.0333 (12) | 0.0145 (10) | 0.0376 (12) | −0.0044 (9) | −0.0040 (10) | 0.0022 (9) |
C1 | 0.0168 (12) | 0.0127 (12) | 0.0161 (12) | −0.0027 (10) | 0.0045 (10) | −0.0025 (9) |
C2 | 0.0224 (17) | 0.0081 (16) | 0.0183 (16) | 0.000 | 0.0089 (14) | 0.000 |
C3 | 0.0200 (17) | 0.0096 (16) | 0.0155 (16) | 0.000 | 0.0039 (14) | 0.000 |
C4 | 0.0202 (16) | 0.0100 (15) | 0.0184 (15) | 0.000 | 0.0085 (13) | 0.000 |
C5 | 0.0142 (11) | 0.0137 (11) | 0.0157 (11) | 0.0025 (8) | 0.0042 (9) | 0.0000 (8) |
C6 | 0.0193 (12) | 0.0174 (13) | 0.0171 (11) | 0.0021 (10) | 0.0073 (10) | 0.0016 (9) |
C7 | 0.0194 (17) | 0.0130 (16) | 0.0167 (16) | 0.000 | 0.0068 (14) | 0.000 |
C8 | 0.0159 (11) | 0.0145 (12) | 0.0187 (11) | 0.0010 (9) | 0.0081 (9) | −0.0004 (9) |
C9 | 0.0183 (12) | 0.0134 (11) | 0.0178 (12) | 0.0025 (9) | 0.0087 (10) | 0.0006 (9) |
C10 | 0.0144 (11) | 0.0156 (12) | 0.0194 (12) | −0.0013 (9) | 0.0052 (10) | 0.0002 (9) |
C11 | 0.0188 (16) | 0.016 (2) | 0.0235 (17) | 0.000 | 0.0036 (14) | 0.000 |
C12 | 0.029 (2) | 0.0099 (17) | 0.0175 (17) | 0.000 | 0.0009 (15) | 0.000 |
Ni1—O2i | 1.983 (3) | O9—H9A | 0.8087 |
Ni1—O2 | 1.983 (3) | O9—H9B | 0.8686 |
Ni1—O3i | 2.087 (2) | O10—C6 | 1.257 (3) |
Ni1—O3 | 2.087 (2) | O11—C8 | 1.250 (3) |
Ni1—O1i | 2.1043 (19) | O12—C12 | 1.261 (3) |
Ni1—O1 | 2.1043 (19) | C1—C3 | 1.385 (3) |
Ni1—C11 | 2.445 (4) | C1—C5 | 1.393 (4) |
Ni2—O7 | 2.0235 (18) | C1—H1A | 0.9300 |
Ni2—O8 | 2.026 (2) | C2—C9 | 1.396 (3) |
Ni2—O5 | 2.0630 (19) | C2—C9i | 1.396 (3) |
Ni2—O4 | 2.0716 (19) | C2—H2C | 0.9300 |
Ni2—O6 | 2.0787 (19) | C3—C1ii | 1.385 (3) |
Ni2—O9 | 2.090 (2) | C3—C12 | 1.512 (5) |
O1—C11 | 1.275 (3) | C4—C5 | 1.392 (3) |
O2—H2A | 0.8508 | C4—C5ii | 1.392 (3) |
O2—H2B | 0.8329 | C4—H4A | 0.9300 |
O3—H3A | 0.9431 | C5—C8 | 1.509 (3) |
O3—H3B | 0.9439 | C6—C9 | 1.504 (3) |
O4—H4B | 0.9132 | C7—C10 | 1.390 (3) |
O4—H4C | 0.9216 | C7—C10i | 1.390 (3) |
O5—H5A | 0.8116 | C7—C11 | 1.476 (5) |
O5—H5B | 0.9233 | C9—C10 | 1.390 (3) |
O6—H6A | 0.8533 | C10—H10A | 0.9300 |
O6—H6B | 0.9664 | C11—O1i | 1.275 (3) |
O7—C8 | 1.261 (3) | C12—O12ii | 1.261 (3) |
O8—C6 | 1.260 (3) | ||
O2i—Ni1—O2 | 98.7 (2) | H5A—O5—H5B | 103.5 |
O2i—Ni1—O3i | 84.80 (10) | Ni2—O6—H6A | 118.3 |
O2—Ni1—O3i | 92.94 (10) | Ni2—O6—H6B | 128.5 |
O2i—Ni1—O3 | 92.94 (10) | H6A—O6—H6B | 103.1 |
O2—Ni1—O3 | 84.80 (10) | C8—O7—Ni2 | 127.85 (17) |
O3i—Ni1—O3 | 176.54 (13) | C6—O8—Ni2 | 128.92 (18) |
O2i—Ni1—O1i | 99.80 (12) | Ni2—O9—H9A | 128.6 |
O2—Ni1—O1i | 160.42 (11) | Ni2—O9—H9B | 122.6 |
O3i—Ni1—O1i | 95.20 (9) | H9A—O9—H9B | 99.5 |
O3—Ni1—O1i | 87.75 (9) | C3—C1—C5 | 120.4 (2) |
O2i—Ni1—O1 | 160.42 (11) | C3—C1—H1A | 119.8 |
O2—Ni1—O1 | 99.80 (12) | C5—C1—H1A | 119.8 |
O3i—Ni1—O1 | 87.75 (9) | C9—C2—C9i | 121.2 (3) |
O3—Ni1—O1 | 95.20 (9) | C9—C2—H2C | 119.4 |
O1i—Ni1—O1 | 62.84 (10) | C9i—C2—H2C | 119.4 |
O2i—Ni1—C11 | 130.67 (11) | C1ii—C3—C1 | 119.9 (3) |
O2—Ni1—C11 | 130.67 (11) | C1ii—C3—C12 | 120.03 (16) |
O3i—Ni1—C11 | 91.73 (7) | C1—C3—C12 | 120.03 (16) |
O3—Ni1—C11 | 91.73 (7) | C5—C4—C5ii | 120.4 (3) |
O1i—Ni1—C11 | 31.42 (5) | C5—C4—H4A | 119.8 |
O1—Ni1—C11 | 31.42 (5) | C5ii—C4—H4A | 119.8 |
O7—Ni2—O8 | 175.21 (9) | C4—C5—C1 | 119.4 (2) |
O7—Ni2—O5 | 91.60 (7) | C4—C5—C8 | 118.9 (2) |
O8—Ni2—O5 | 86.05 (8) | C1—C5—C8 | 121.6 (2) |
O7—Ni2—O4 | 88.86 (8) | O10—C6—O8 | 124.4 (2) |
O8—Ni2—O4 | 93.77 (8) | O10—C6—C9 | 118.7 (2) |
O5—Ni2—O4 | 176.11 (9) | O8—C6—C9 | 116.9 (2) |
O7—Ni2—O6 | 93.66 (8) | C10—C7—C10i | 119.9 (3) |
O8—Ni2—O6 | 90.41 (8) | C10—C7—C11 | 120.07 (17) |
O5—Ni2—O6 | 87.51 (8) | C10i—C7—C11 | 120.07 (17) |
O4—Ni2—O6 | 88.61 (8) | O11—C8—O7 | 124.9 (2) |
O7—Ni2—O9 | 86.70 (8) | O11—C8—C5 | 118.6 (2) |
O8—Ni2—O9 | 89.18 (8) | O7—C8—C5 | 116.5 (2) |
O5—Ni2—O9 | 91.29 (8) | C10—C9—C2 | 118.9 (2) |
O4—Ni2—O9 | 92.59 (8) | C10—C9—C6 | 118.9 (2) |
O6—Ni2—O9 | 178.76 (9) | C2—C9—C6 | 122.2 (2) |
C11—O1—Ni1 | 89.19 (17) | C9—C10—C7 | 120.6 (3) |
Ni1—O2—H2A | 125.6 | C9—C10—H10A | 119.7 |
Ni1—O2—H2B | 117.6 | C7—C10—H10A | 119.7 |
H2A—O2—H2B | 110.8 | O1—C11—O1i | 118.8 (3) |
Ni1—O3—H3A | 130.1 | O1—C11—C7 | 120.61 (16) |
Ni1—O3—H3B | 114.6 | O1i—C11—C7 | 120.61 (16) |
H3A—O3—H3B | 112.3 | O1—C11—Ni1 | 59.39 (16) |
Ni2—O4—H4B | 99.5 | O1i—C11—Ni1 | 59.39 (16) |
Ni2—O4—H4C | 115.0 | C7—C11—Ni1 | 180.0 |
H4B—O4—H4C | 106.1 | O12ii—C12—O12 | 123.1 (4) |
Ni2—O5—H5A | 105.4 | O12ii—C12—C3 | 118.45 (18) |
Ni2—O5—H5B | 122.7 | O12—C12—C3 | 118.45 (18) |
Symmetry codes: (i) −x+1, y, −z; (ii) −x+2, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O10iii | 0.87 | 1.90 | 2.767 (3) | 172 |
O9—H9A···O12iv | 0.81 | 2.33 | 3.102 (3) | 160 |
O6—H6B···O1v | 0.97 | 1.98 | 2.942 (3) | 173 |
O6—H6A···O11vi | 0.85 | 1.83 | 2.683 (3) | 173 |
O5—H5B···O12vi | 0.92 | 1.95 | 2.825 (3) | 158 |
O5—H5A···O11 | 0.81 | 1.79 | 2.559 (3) | 156 |
O4—H4C···O1iii | 0.92 | 1.97 | 2.870 (3) | 167 |
O4—H4B···O10 | 0.91 | 1.77 | 2.617 (3) | 154 |
O3—H3B···O12vii | 0.94 | 1.97 | 2.907 (3) | 171 |
O3—H3A···O4viii | 0.94 | 2.03 | 2.917 (3) | 156 |
O2—H2B···O5ix | 0.83 | 1.81 | 2.638 (3) | 173 |
O2—H2A···O12x | 0.85 | 2.02 | 2.861 (4) | 171 |
Symmetry codes: (iii) −x+3/2, y−1/2, −z+1; (iv) −x+3/2, y+1/2, −z+1; (v) −x+3/2, y−1/2, −z; (vi) −x+3/2, y+1/2, −z; (vii) x−1/2, y+3/2, z; (viii) x−1/2, y+1/2, z; (ix) x, y+1, z; (x) −x+3/2, y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni3(C9H3O6)2(H2O)12] |
Mr | 806.49 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 295 |
a, b, c (Å) | 17.3394 (10), 12.8724 (7), 6.5462 (3) |
β (°) | 111.609 (2) |
V (Å3) | 1358.42 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.17 |
Crystal size (mm) | 0.25 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.613, 0.737 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6798, 3299, 3156 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.068, 1.07 |
No. of reflections | 3299 |
No. of parameters | 208 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.38 |
Absolute structure | Flack (1983), 1531 Friedel pairs |
Absolute structure parameter | 0.549 (12) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O10i | 0.87 | 1.90 | 2.767 (3) | 171.5 |
O9—H9A···O12ii | 0.81 | 2.33 | 3.102 (3) | 160.0 |
O6—H6B···O1iii | 0.97 | 1.98 | 2.942 (3) | 173.1 |
O6—H6A···O11iv | 0.85 | 1.83 | 2.683 (3) | 173.1 |
O5—H5B···O12iv | 0.92 | 1.95 | 2.825 (3) | 157.6 |
O5—H5A···O11 | 0.81 | 1.79 | 2.559 (3) | 156.4 |
O4—H4C···O1i | 0.92 | 1.97 | 2.870 (3) | 166.7 |
O4—H4B···O10 | 0.91 | 1.77 | 2.617 (3) | 154.0 |
O3—H3B···O12v | 0.94 | 1.97 | 2.907 (3) | 171.3 |
O3—H3A···O4vi | 0.94 | 2.03 | 2.917 (3) | 155.8 |
O2—H2B···O5vii | 0.83 | 1.81 | 2.638 (3) | 173.0 |
O2—H2A···O12viii | 0.85 | 2.02 | 2.861 (4) | 171.3 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) −x+3/2, y+1/2, −z+1; (iii) −x+3/2, y−1/2, −z; (iv) −x+3/2, y+1/2, −z; (v) x−1/2, y+3/2, z; (vi) x−1/2, y+1/2, z; (vii) x, y+1, z; (viii) −x+3/2, y+3/2, −z+1. |
Acknowledgements
This research project was supported by the National Science Council of Taiwan (NSC97–2113-M-033–003-MY2) and by the project of the specific research fields of Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR—CH.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of coordination polymers has been a subject of intense research owing to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, and luminescence. A large number of these materials have been synthesized by solvothermal reactions with organic carboxyl acids (Kitagawa et al. 2004). The coordination polymers commonly adopt three-dimensional, two-dimensional, and one-dimensional structures via employed metal ions as connectors and rigid or flexible organic ligands as linkers. As a further study of such a complex, we report here the structure of the title compound, a nickel coordination polymer with one dimensional zigzag chains.
The crystal structure analysis of the title compound reveals the structure to be composed of zigzag chains. The compound has a non-centrosymmetric C2 space group and the crystal under investigation was twinned with a Flack parameter of 0.549 (12). The asymmetric unit contains two types of NiO6 groups (Fig. 1). The group of Ni1 is terminal and the metal atom is coordinated in a bidentate fashion to one carboxylate ligand and to four water oxygen atoms. The other nickel atom, Ni2, is coordinated in the axial positions by two monodenate carboxylate groups, and by four water molecules in the equatorial positions. All Ni–O bond lengths range from 2.021 (3) to 2.102 (3) Å. The BTC anions also have two types of coordination modes towards the NiO6 groups. One of the BTC bridges between two Ni2 atoms via two of its carboxylate groups. The third carboxylate is protonated and not metal coordinated. The other BTC ligand bridges via two of its carboxylates between two Ni2 atoms. Its third carboxylate group coordinates to a Ni1 atom. The one-dimensional chains thus formed are further linked with each other by hydrogen bonds and π-π interactions to form a layered structure. Hydrogen bonding interactions between coordination waters are O2–H2B···O5ix, O3–H3A···O4viii, O4–H4B···O10, O4–H4C···O1iii, O5–H5A···O11, O6–H6A···O11vi, O6–H6B···O1v, and O9–H9B···O10iii (Fig. 2). The uncoordinated carboxylate group is involved in hydrogen bonding via O2–H2A···O12x, O3–H3B···O12vii, O5–H5B···O12vi, and O9–H9A···O12iv between nearby layers (Fig. 3, see table 1 for numerical values and symmetry operators). π-π stacking interactions are found between aromatic rings made up of C1 to C5, C1ii and C5ii, and the ring defined by C2, C7, C9, C10, C10i and C9i (symmetry operators: (i) -x+1, y, -z; (ii) -x+2, y, -z+1). The centroid to centroid distance between Cg1 and Cg2ix defined by the two rings is 3.58 (1) Å. The rings are slipped against each other, and the approximate interplanar distance is 3.27 Å (as defined by the distance of carbon atom C4 and Cg2ix (symmetry operator: (ix) 1/2+x, -1/2+y, z). These π-π interactions connect nearby layers with each other (Fig. 4).