metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­(1H-benzimidazole-5,6-di­carboxyl­ato-κN3)nickel(II) penta­hydrate

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 14 May 2009; accepted 18 May 2009; online 23 May 2009)

In the title mononuclear complex, [Ni(C9H4N2O4)(H2O)5]·5H2O, the NiII atom is six-coordinated by one N atom from a 1H-benzimidazole-5,6-dicarboxyl­ate ligand and by five O atoms from five water mol­ecules and displays a distorted octa­hedral geometry. Inter­molecular O—H⋯O hydrogen-bonding inter­actions among the coordinated water mol­ecules, solvent water mol­ecules and carboxyl O atoms of the organic ligand and additional N—H⋯O hydrogen bonding lead to the formation of a three-dimensional supra­molecular network.

Related literature

For background information on 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Yao et al. (2008[Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H4N2O4)(H2O)5]·5H2O

  • Mr = 443.01

  • Triclinic, [P \overline 1]

  • a = 6.8436 (14) Å

  • b = 11.434 (2) Å

  • c = 12.344 (3) Å

  • α = 78.29 (3)°

  • β = 78.65 (3)°

  • γ = 74.92 (3)°

  • V = 902.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.31 × 0.25 × 0.21 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.725, Tmax = 0.793

  • 7176 measured reflections

  • 3228 independent reflections

  • 2851 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.167

  • S = 1.14

  • 3228 reflections

  • 235 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10W—H20W⋯O1W 0.84 2.00 2.836 (4) 176
O10W—H19W⋯O8Wi 0.84 1.88 2.703 (5) 166
O9W—H17W⋯O3ii 0.84 1.90 2.733 (5) 172
O9W—H18W⋯O10Wiii 0.84 1.91 2.720 (5) 163
O8W—H15W⋯O1iv 0.84 1.95 2.765 (5) 163
O8W—H16W⋯O2 0.84 1.96 2.775 (5) 162
O7W—H13W⋯O8Wv 0.84 1.93 2.754 (5) 165
O7W—H14W⋯O4v 0.84 1.91 2.734 (5) 169
O6W—H12W⋯O2Wvi 0.84 2.06 2.857 (4) 159
O6W—H11W⋯O4vii 0.84 1.97 2.808 (4) 174
O5W—H10W⋯O4viii 0.84 1.96 2.800 (4) 176
O5W—H9W⋯O9Wiii 0.84 1.98 2.817 (4) 173
O4W—H8W⋯O9Wv 0.84 1.90 2.736 (5) 173
O4W—H7W⋯O3ix 0.84 1.94 2.709 (4) 151
O3W—H6W⋯O6Wviii 0.84 1.93 2.761 (4) 172
O3W—H5W⋯O7Wx 0.84 1.93 2.729 (5) 159
O2W—H4W⋯O1v 0.84 1.80 2.620 (4) 164
O2W—H3W⋯O10Wiv 0.84 1.90 2.734 (5) 175
O1W—H1W⋯O6Wv 0.84 1.96 2.783 (5) 168
O1W—H2W⋯O2v 0.84 1.79 2.612 (4) 166
N1—H1⋯O7Wxi 0.86 1.97 2.803 (5) 162
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z+1; (vii) -x+1, -y+2, -z+1; (viii) x, y-1, z; (ix) x+1, y-1, z; (x) -x+1, -y, -z+1; (xi) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the structural investigation of 1H-benzimidazole-5,6-dicarboxylate complexes, it has been found that the 1H-benzimidazole-5,6-dicarboxylic acid can function as a multidentate ligand (Lo et al., 2007; Yao et al., 2008), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, a new Ni complex obtained by the reaction of 1H-benzimidazole-5,6-dicarboxylic acid with nickel chloride in an alkaline aqueous solution.

As illustrated in Fig. 1, the NiII atom exhibits a slightly distorted octahedral coordination sphere, defined by one N atom from the 1H-benzimidazole-5,6-dicarboxylate ligand and five coordinated water molecules. The five non-bonded solvent water molecules are located in cavities of the three-dimensional framework, allowing them to participate in various O—H···O hydrogen bonds (Table 1) with the coordinated water molecules, non-coordinated water molecules and carboxylate O atoms of the organic ligand. The hydrogen bonds are in the normal range (Table 1, Fig. 2).

Related literature top

For background information on 1H-benzimidazole-5,6-dicarboxylate complexes, see: Lo et al., (2007); Yao et al., (2008).

Experimental top

A mixture of nickel chloride (1 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecular hydrogen bonds are shown as dashed lines.
Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-κN3)nickel(II) pentahydrate top
Crystal data top
[Ni(C9H4N2O4)(H2O)5]·5H2OZ = 2
Mr = 443.01F(000) = 464
Triclinic, P1Dx = 1.630 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8436 (14) ÅCell parameters from 3600 reflections
b = 11.434 (2) Åθ = 1.4–28°
c = 12.344 (3) ŵ = 1.15 mm1
α = 78.29 (3)°T = 293 K
β = 78.65 (3)°Block, blue
γ = 74.92 (3)°0.31 × 0.25 × 0.21 mm
V = 902.6 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3228 independent reflections
Radiation source: fine-focus sealed tube2851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.725, Tmax = 0.793k = 1313
7176 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0905P)2 + 1.2897P]
where P = (Fo2 + 2Fc2)/3
3228 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 1.53 e Å3
30 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ni(C9H4N2O4)(H2O)5]·5H2Oγ = 74.92 (3)°
Mr = 443.01V = 902.6 (3) Å3
Triclinic, P1Z = 2
a = 6.8436 (14) ÅMo Kα radiation
b = 11.434 (2) ŵ = 1.15 mm1
c = 12.344 (3) ÅT = 293 K
α = 78.29 (3)°0.31 × 0.25 × 0.21 mm
β = 78.65 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3228 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2851 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.793Rint = 0.048
7176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05630 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.14Δρmax = 1.53 e Å3
3228 reflectionsΔρmin = 0.60 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3714 (6)0.5621 (4)0.7112 (3)0.0205 (8)
N10.3498 (6)0.3063 (3)0.9967 (3)0.0272 (8)
H10.30740.30781.06690.033*
Ni10.59930 (7)0.09723 (4)0.74101 (4)0.0200 (2)
O10.2171 (5)0.6926 (3)0.5614 (3)0.0379 (8)
C20.4484 (6)0.4375 (3)0.7118 (3)0.0210 (8)
H20.51060.40680.64600.025*
N20.4903 (5)0.2318 (3)0.8396 (3)0.0224 (7)
O20.5536 (5)0.6543 (3)0.5459 (2)0.0346 (8)
C30.4301 (6)0.3595 (3)0.8136 (3)0.0209 (8)
O30.0491 (5)0.7830 (3)0.8792 (3)0.0346 (8)
C40.3381 (6)0.4072 (4)0.9121 (3)0.0230 (8)
O40.3074 (5)0.8139 (3)0.7441 (3)0.0328 (7)
C50.2592 (6)0.5316 (4)0.9124 (3)0.0253 (9)
H50.19730.56170.97850.030*
C60.2755 (6)0.6096 (4)0.8113 (3)0.0222 (8)
C70.4385 (7)0.2068 (4)0.9496 (3)0.0258 (9)
H70.46180.12770.98980.031*
C80.2025 (6)0.7459 (4)0.8107 (3)0.0243 (9)
C90.3812 (6)0.6449 (3)0.5979 (3)0.0217 (8)
O1W0.3920 (4)0.1803 (3)0.6302 (2)0.0284 (7)
H2W0.43030.22720.57270.043*
H1W0.35130.12370.61380.043*
O2W0.8180 (4)0.1821 (3)0.6393 (2)0.0274 (6)
H3W0.86970.22730.66560.041*
H4W0.79250.21290.57440.041*
O3W0.7170 (6)0.0427 (3)0.6518 (3)0.0463 (10)
H5W0.74720.11640.68230.070*
H6W0.75390.03440.58220.070*
O4W0.7928 (5)0.0082 (3)0.8549 (3)0.0313 (7)
H7W0.86470.05960.83910.047*
H8W0.86180.04750.87650.047*
O5W0.3802 (5)0.0021 (3)0.8336 (2)0.0285 (7)
H9W0.27340.04890.86070.043*
H10W0.35180.05250.80720.043*
O6W0.8012 (5)0.9831 (3)0.4213 (2)0.0340 (7)
H11W0.76151.04200.37170.051*
H12W0.92570.94990.40490.051*
O7W0.2893 (5)0.2719 (3)0.2313 (3)0.0372 (8)
H14W0.41280.25540.23980.056*
H13W0.22010.33170.26240.056*
O8W0.9187 (5)0.5590 (3)0.6314 (3)0.0431 (8)
H16W0.82000.57770.59520.065*
H15W1.01370.59320.59820.065*
O9W0.0044 (5)0.8476 (3)0.0863 (3)0.0378 (8)
H18W0.01840.78950.13950.057*
H17W0.00750.82200.02570.057*
O10W0.0100 (5)0.3191 (3)0.7221 (3)0.0406 (8)
H19W0.00440.39500.70060.061*
H20W0.12570.28000.69580.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (19)0.021 (2)0.0181 (18)0.0063 (15)0.0026 (15)0.0000 (15)
N10.041 (2)0.0185 (17)0.0163 (16)0.0034 (14)0.0012 (15)0.0021 (13)
Ni10.0245 (3)0.0148 (3)0.0184 (3)0.0027 (2)0.0024 (2)0.00091 (19)
O10.0319 (17)0.0426 (19)0.0323 (16)0.0088 (14)0.0108 (13)0.0156 (14)
C20.025 (2)0.0178 (19)0.0179 (18)0.0028 (15)0.0014 (15)0.0019 (14)
N20.0285 (18)0.0143 (16)0.0211 (16)0.0028 (13)0.0034 (14)0.0013 (12)
O20.0295 (16)0.0383 (18)0.0272 (16)0.0074 (13)0.0024 (13)0.0123 (13)
C30.0221 (19)0.0179 (19)0.0218 (19)0.0035 (15)0.0035 (15)0.0023 (15)
O30.0371 (17)0.0234 (16)0.0344 (17)0.0036 (13)0.0036 (14)0.0068 (12)
C40.028 (2)0.021 (2)0.0189 (19)0.0063 (16)0.0015 (16)0.0002 (14)
O40.0382 (18)0.0188 (15)0.0391 (17)0.0077 (12)0.0007 (14)0.0031 (12)
C50.031 (2)0.021 (2)0.0205 (19)0.0028 (16)0.0002 (16)0.0037 (15)
C60.023 (2)0.017 (2)0.024 (2)0.0018 (15)0.0034 (16)0.0027 (15)
C70.035 (2)0.0179 (19)0.022 (2)0.0049 (16)0.0046 (17)0.0015 (15)
C80.030 (2)0.018 (2)0.024 (2)0.0036 (16)0.0074 (17)0.0021 (15)
C90.030 (2)0.0166 (19)0.0192 (19)0.0058 (16)0.0053 (16)0.0015 (14)
O1W0.0327 (16)0.0282 (16)0.0246 (14)0.0124 (12)0.0063 (12)0.0039 (11)
O2W0.0297 (15)0.0283 (16)0.0238 (14)0.0103 (12)0.0053 (12)0.0023 (11)
O3W0.081 (3)0.0219 (16)0.0287 (17)0.0075 (16)0.0088 (17)0.0086 (13)
O4W0.0315 (16)0.0221 (15)0.0396 (17)0.0020 (12)0.0139 (13)0.0052 (12)
O5W0.0327 (16)0.0227 (15)0.0292 (15)0.0092 (12)0.0025 (12)0.0053 (11)
O6W0.0355 (18)0.0310 (17)0.0306 (16)0.0042 (13)0.0035 (13)0.0006 (12)
O7W0.0381 (18)0.0401 (19)0.0320 (17)0.0067 (14)0.0040 (14)0.0067 (14)
O8W0.0349 (18)0.039 (2)0.052 (2)0.0080 (15)0.0099 (15)0.0024 (15)
O9W0.0462 (19)0.0365 (18)0.0310 (16)0.0061 (15)0.0090 (15)0.0077 (13)
O10W0.0358 (18)0.0334 (18)0.051 (2)0.0075 (14)0.0088 (15)0.0022 (15)
Geometric parameters (Å, º) top
C1—C21.383 (5)C5—H50.9300
C1—C61.422 (6)C6—C81.506 (5)
C1—C91.522 (5)C7—H70.9300
N1—C71.332 (5)O1W—H2W0.8400
N1—C41.387 (5)O1W—H1W0.8400
N1—H10.8600O2W—H3W0.8400
Ni1—O3W2.029 (3)O2W—H4W0.8400
Ni1—O4W2.053 (3)O3W—H5W0.8400
Ni1—N22.052 (3)O3W—H6W0.8400
Ni1—O2W2.069 (3)O4W—H7W0.8400
Ni1—O1W2.078 (3)O4W—H8W0.8400
Ni1—O5W2.099 (3)O5W—H9W0.8400
O1—C91.242 (5)O5W—H10W0.8400
C2—C31.390 (5)O6W—H11W0.8400
C2—H20.9300O6W—H12W0.8400
N2—C71.325 (5)O7W—H14W0.8400
N2—C31.398 (5)O7W—H13W0.8400
O2—C91.247 (5)O8W—H16W0.8400
C3—C41.400 (6)O8W—H15W0.8400
O3—C81.250 (5)O9W—H18W0.8400
C4—C51.384 (6)O9W—H17W0.8400
O4—C81.263 (5)O10W—H19W0.8400
C5—C61.383 (5)O10W—H20W0.8400
C2—C1—C6121.3 (3)C6—C5—H5121.1
C2—C1—C9117.1 (3)C4—C5—H5121.1
C6—C1—C9121.5 (3)C5—C6—C1120.4 (4)
C7—N1—C4107.6 (3)C5—C6—C8118.6 (3)
C7—N1—H1126.2C1—C6—C8120.9 (3)
C4—N1—H1126.2N2—C7—N1113.3 (3)
O3W—Ni1—O4W88.73 (14)N2—C7—H7123.4
O3W—Ni1—N2176.19 (13)N1—C7—H7123.4
O4W—Ni1—N287.52 (13)O3—C8—O4124.7 (4)
O3W—Ni1—O2W86.14 (14)O3—C8—C6118.0 (4)
O4W—Ni1—O2W92.83 (12)O4—C8—C6117.1 (3)
N2—Ni1—O2W94.75 (13)O1—C9—O2124.9 (4)
O3W—Ni1—O1W90.63 (14)O1—C9—C1117.3 (3)
O4W—Ni1—O1W176.58 (11)O2—C9—C1117.7 (4)
N2—Ni1—O1W93.07 (13)Ni1—O1W—H2W117.9
O2W—Ni1—O1W90.49 (11)Ni1—O1W—H1W106.6
O3W—Ni1—O5W89.34 (13)H2W—O1W—H1W111.6
O4W—Ni1—O5W88.84 (13)Ni1—O2W—H3W119.4
N2—Ni1—O5W89.88 (13)Ni1—O2W—H4W115.2
O2W—Ni1—O5W175.15 (11)H3W—O2W—H4W111.6
O1W—Ni1—O5W87.79 (12)Ni1—O3W—H5W122.7
C1—C2—C3118.0 (4)Ni1—O3W—H6W125.1
C1—C2—H2121.0H5W—O3W—H6W111.9
C3—C2—H2121.0Ni1—O4W—H7W113.0
C7—N2—C3104.9 (3)Ni1—O4W—H8W119.4
C7—N2—Ni1122.5 (3)H7W—O4W—H8W111.4
C3—N2—Ni1132.1 (3)Ni1—O5W—H9W112.7
C2—C3—N2130.8 (4)Ni1—O5W—H10W119.8
C2—C3—C4120.3 (4)H9W—O5W—H10W111.1
N2—C3—C4108.9 (3)H11W—O6W—H12W111.6
N1—C4—C5132.6 (4)H14W—O7W—H13W111.7
N1—C4—C3105.3 (3)H16W—O8W—H15W111.6
C5—C4—C3122.2 (4)H18W—O9W—H17W111.7
C6—C5—C4117.8 (4)H19W—O10W—H20W111.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10W—H20W···O1W0.842.002.836 (4)176
O10W—H19W···O8Wi0.841.882.703 (5)166
O9W—H17W···O3ii0.841.902.733 (5)172
O9W—H18W···O10Wiii0.841.912.720 (5)163
O8W—H15W···O1iv0.841.952.765 (5)163
O8W—H16W···O20.841.962.775 (5)162
O7W—H13W···O8Wv0.841.932.754 (5)165
O7W—H14W···O4v0.841.912.734 (5)169
O6W—H12W···O2Wvi0.842.062.857 (4)159
O6W—H11W···O4vii0.841.972.808 (4)174
O5W—H10W···O4viii0.841.962.800 (4)176
O5W—H9W···O9Wiii0.841.982.817 (4)173
O4W—H8W···O9Wv0.841.902.736 (5)173
O4W—H7W···O3ix0.841.942.709 (4)151
O3W—H6W···O6Wviii0.841.932.761 (4)172
O3W—H5W···O7Wx0.841.932.729 (5)159
O2W—H4W···O1v0.841.802.620 (4)164
O2W—H3W···O10Wiv0.841.902.734 (5)175
O1W—H1W···O6Wv0.841.962.783 (5)168
O1W—H2W···O2v0.841.792.612 (4)166
N1—H1···O7Wxi0.861.972.803 (5)162
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x, y1, z; (ix) x+1, y1, z; (x) x+1, y, z+1; (xi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C9H4N2O4)(H2O)5]·5H2O
Mr443.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8436 (14), 11.434 (2), 12.344 (3)
α, β, γ (°)78.29 (3), 78.65 (3), 74.92 (3)
V3)902.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.31 × 0.25 × 0.21
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.725, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
7176, 3228, 2851
Rint0.048
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.167, 1.14
No. of reflections3228
No. of parameters235
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 0.60

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10W—H20W···O1W0.842.002.836 (4)176.4
O10W—H19W···O8Wi0.841.882.703 (5)165.9
O9W—H17W···O3ii0.841.902.733 (5)172.2
O9W—H18W···O10Wiii0.841.912.720 (5)163.0
O8W—H15W···O1iv0.841.952.765 (5)163.3
O8W—H16W···O20.841.962.775 (5)162.3
O7W—H13W···O8Wv0.841.932.754 (5)165.2
O7W—H14W···O4v0.841.912.734 (5)168.7
O6W—H12W···O2Wvi0.842.062.857 (4)158.9
O6W—H11W···O4vii0.841.972.808 (4)174.3
O5W—H10W···O4viii0.841.962.800 (4)175.7
O5W—H9W···O9Wiii0.841.982.817 (4)173.3
O4W—H8W···O9Wv0.841.902.736 (5)173.4
O4W—H7W···O3ix0.841.942.709 (4)150.9
O3W—H6W···O6Wviii0.841.932.761 (4)172.2
O3W—H5W···O7Wx0.841.932.729 (5)159.2
O2W—H4W···O1v0.841.802.620 (4)163.5
O2W—H3W···O10Wiv0.841.902.734 (5)174.7
O1W—H1W···O6Wv0.841.962.783 (5)167.6
O1W—H2W···O2v0.841.792.612 (4)165.8
N1—H1···O7Wxi0.861.972.803 (5)162.2
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x, y1, z; (ix) x+1, y1, z; (x) x+1, y, z+1; (xi) x, y, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds