organic compounds
2-(2-Furylmethylammonio)ethanesulfonate methanol solvate
aDepartment of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China, and bEquipment Department, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com
The organic molecule of the title compound, C7H11NO4S·CH3OH, is a zwitterion and its furan ring displays positional disorder [occupancy 0.563 (5):0.437 (5)]. The is extended into a three-dimensional supramolecular architecture through intermolecular O—H⋯O and N—H⋯O hydrogen bonds with participation of the methanol solvent molecules.
Related literature
For a number of reduced or unreduced Schiff base complexes derived from taurine, see: Jiang et al. (2004, 2006); Li et al. (2005, 2006a,b, 2007a,b, 2008a,b); Liao et al. (2007); Zeng et al. (2003); Zhang et al. (2005). For the crystal stucture of a similar compound, 2-(2-pyridylmethylammonio) ethanesulfonate dihydrate, see: Li et al. (2006b).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809020005/at2791sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809020005/at2791Isup2.hkl
Furan-2-carbaldehyde (0.96 g, 10 mmol) in MeOH (10 ml) was dropwise added to a solution of 2-aminoethanesulfonic acid (1.25 g, 10 mmol) in methanol (10 ml) containing KOH (0.56 g, 10 mmol). The yellow solution was stirred for about 2 h at room temperature prior to cooling in an ice bath. The intermediate Schiff base that formed was reduced with an excess of KBH4 (0.79 g, 15 mmol). The yellow colour slowly discharged, and after 3 h the solution was adjusted with concentrated HCl to pH = 6.0. The resulting white solid was filtered off, washed with anhydrous methanol and diethyl ether. The obtained solid was dissolved in a ethanol-methanol mixture (1:1 v/v, 20 ml) and heated. When cooling, colourless granular-shaped crystals were obtained in a yield of 76%. Analysis, found: C 40.42, H 6.37, N 5.85, S 13.55%; C8H15NO5S requires: C 40.50, H 6.33, N 5.91, S 13.50%. IR (KBr,ν, cm-1): 768.7[γ(C═C-H)], 741.0(γCH2); 1210.1, 1147.5, 1040.8(ν SO3-); 1607.6(ν C═C); 3428.4(ν O-H); 3098.8, 3021.3(ν N-H).
The H atoms bonded to C and N atoms were positioned geometrically with C—H distance of 0.93–0.97Å and N—H distances of 0.900 Å, and treated as riding atoms, with Uiso(H) = 1.2 or 1.5Ueq(C, N). The O—H hydrogen atom was located in a difference Fourier map and their positional and isotropic displacement parameters were refined; the applied restraint of the O—H distance wasere 0.820 Å, with Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C7H11NO4S·CH4O | F(000) = 504 |
Mr = 237.27 | Dx = 1.422 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2624 reflections |
a = 10.729 (10) Å | θ = 2.9–26.3° |
b = 9.174 (8) Å | µ = 0.29 mm−1 |
c = 11.27 (1) Å | T = 294 K |
β = 91.964 (10)° | Granular, colourless |
V = 1108.6 (17) Å3 | 0.39 × 0.23 × 0.19 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2056 independent reflections |
Radiation source: fine-focus sealed tube | 1675 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.894, Tmax = 0.946 | k = −11→11 |
7971 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.7985P] where P = (Fo2 + 2Fc2)/3 |
2056 reflections | (Δ/σ)max = 0.001 |
131 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C7H11NO4S·CH4O | V = 1108.6 (17) Å3 |
Mr = 237.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.729 (10) Å | µ = 0.29 mm−1 |
b = 9.174 (8) Å | T = 294 K |
c = 11.27 (1) Å | 0.39 × 0.23 × 0.19 mm |
β = 91.964 (10)° |
Bruker APEXII CCD area-detector diffractometer | 2056 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1675 reflections with I > 2σ(I) |
Tmin = 0.894, Tmax = 0.946 | Rint = 0.025 |
7971 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.34 e Å−3 |
2056 reflections | Δρmin = −0.31 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.15887 (16) | 0.40087 (19) | 1.03366 (18) | 0.0405 (5) | 0.563 (5) |
C2 | 0.06631 (19) | 0.3384 (3) | 1.0916 (3) | 0.0555 (12) | 0.563 (5) |
H2 | 0.0190 | 0.2592 | 1.0650 | 0.067* | 0.563 (5) |
C3 | 0.0522 (3) | 0.4135 (4) | 1.2010 (2) | 0.0573 (19) | 0.563 (5) |
H3 | −0.0047 | 0.3950 | 1.2595 | 0.069* | 0.563 (5) |
C4 | 0.1395 (4) | 0.5157 (4) | 1.1997 (2) | 0.0619 (14) | 0.563 (5) |
H4 | 0.1532 | 0.5825 | 1.2608 | 0.074* | 0.563 (5) |
O1 | 0.2068 (3) | 0.5129 (2) | 1.0994 (2) | 0.0578 (9) | 0.563 (5) |
O1' | 0.0572 (2) | 0.3157 (3) | 1.0589 (3) | 0.0578 (9) | 0.437 (5) |
C1' | 0.15442 (16) | 0.40368 (19) | 1.03098 (18) | 0.0405 (5) | 0.437 (5) |
C2' | 0.1761 (2) | 0.4964 (2) | 1.11987 (19) | 0.0555 (12) | 0.437 (5) |
H2' | 0.2380 | 0.5675 | 1.1222 | 0.067* | 0.437 (5) |
C3' | 0.0903 (3) | 0.4705 (4) | 1.2108 (2) | 0.0573 (19) | 0.437 (5) |
H3' | 0.0832 | 0.5187 | 1.2828 | 0.069* | 0.437 (5) |
C4' | 0.0230 (3) | 0.3605 (4) | 1.1674 (3) | 0.0619 (14) | 0.437 (5) |
H4' | −0.0418 | 0.3180 | 1.2078 | 0.074* | 0.437 (5) |
C5 | 0.2106 (2) | 0.3793 (3) | 0.9149 (2) | 0.0455 (6) | |
H5A | 0.1911 | 0.4519 | 0.8546 | 0.055* | |
H5B | 0.1656 | 0.2896 | 0.8977 | 0.055* | |
C6 | 0.3852 (2) | 0.2834 (3) | 0.80019 (19) | 0.0389 (5) | |
H6A | 0.3740 | 0.3697 | 0.7512 | 0.047* | |
H6B | 0.3372 | 0.2049 | 0.7635 | 0.047* | |
C7 | 0.5215 (2) | 0.2421 (3) | 0.80631 (19) | 0.0385 (5) | |
H7A | 0.5316 | 0.1509 | 0.8491 | 0.046* | |
H7B | 0.5684 | 0.3165 | 0.8497 | 0.046* | |
N1 | 0.33791 (17) | 0.3130 (2) | 0.92132 (16) | 0.0366 (4) | |
H1A | 0.3355 | 0.2290 | 0.9624 | 0.044* | |
H1B | 0.3908 | 0.3739 | 0.9604 | 0.044* | |
O2 | 0.51984 (16) | 0.09645 (19) | 0.60803 (14) | 0.0475 (4) | |
O3 | 0.71519 (15) | 0.2028 (2) | 0.67984 (16) | 0.0547 (5) | |
O4 | 0.54838 (17) | 0.35667 (19) | 0.59804 (16) | 0.0541 (5) | |
S1 | 0.58193 (5) | 0.22288 (6) | 0.66156 (5) | 0.03640 (19) | |
C8 | 0.1847 (3) | 0.9586 (4) | 0.0474 (3) | 0.0661 (8) | |
H8A | 0.2158 | 0.9121 | 0.1187 | 0.099* | |
H8B | 0.1539 | 0.8861 | −0.0075 | 0.099* | |
H8C | 0.1184 | 1.0241 | 0.0660 | 0.099* | |
O6 | 0.2791 (2) | 1.0353 (2) | −0.0028 (3) | 0.0841 (8) | |
H6 | 0.3274 | 0.9783 | −0.0334 | 0.126* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0334 (12) | 0.0395 (13) | 0.0489 (14) | 0.0009 (10) | 0.0043 (10) | −0.0021 (11) |
C2 | 0.054 (3) | 0.057 (3) | 0.056 (3) | −0.021 (2) | 0.008 (2) | −0.008 (2) |
C3 | 0.053 (3) | 0.075 (5) | 0.0450 (19) | 0.007 (3) | 0.015 (2) | −0.008 (3) |
C4 | 0.065 (3) | 0.071 (3) | 0.051 (2) | 0.007 (3) | 0.016 (2) | −0.007 (2) |
O1 | 0.0508 (17) | 0.0572 (19) | 0.0662 (18) | −0.0150 (15) | 0.0137 (14) | −0.0136 (15) |
O1' | 0.0508 (17) | 0.0572 (19) | 0.0662 (18) | −0.0150 (15) | 0.0137 (14) | −0.0136 (15) |
C1' | 0.0334 (12) | 0.0395 (13) | 0.0489 (14) | 0.0009 (10) | 0.0043 (10) | −0.0021 (11) |
C2' | 0.054 (3) | 0.057 (3) | 0.056 (3) | −0.021 (2) | 0.008 (2) | −0.008 (2) |
C3' | 0.053 (3) | 0.075 (5) | 0.0450 (19) | 0.007 (3) | 0.015 (2) | −0.008 (3) |
C4' | 0.065 (3) | 0.071 (3) | 0.051 (2) | 0.007 (3) | 0.016 (2) | −0.007 (2) |
C5 | 0.0374 (13) | 0.0510 (15) | 0.0482 (14) | 0.0053 (11) | 0.0042 (10) | 0.0031 (11) |
C6 | 0.0411 (12) | 0.0455 (14) | 0.0302 (11) | −0.0025 (10) | 0.0026 (9) | −0.0033 (10) |
C7 | 0.0417 (12) | 0.0456 (13) | 0.0282 (11) | 0.0026 (10) | 0.0018 (9) | −0.0035 (10) |
N1 | 0.0373 (10) | 0.0374 (10) | 0.0351 (10) | −0.0016 (8) | 0.0036 (8) | −0.0042 (8) |
O2 | 0.0572 (11) | 0.0450 (10) | 0.0400 (9) | −0.0009 (8) | −0.0020 (8) | −0.0118 (7) |
O3 | 0.0383 (9) | 0.0731 (13) | 0.0530 (11) | 0.0057 (9) | 0.0040 (8) | −0.0093 (9) |
O4 | 0.0659 (12) | 0.0465 (11) | 0.0507 (10) | 0.0079 (9) | 0.0144 (9) | 0.0144 (8) |
S1 | 0.0405 (3) | 0.0390 (3) | 0.0299 (3) | 0.0022 (2) | 0.0039 (2) | −0.0017 (2) |
C8 | 0.0571 (17) | 0.068 (2) | 0.074 (2) | −0.0017 (15) | 0.0079 (15) | 0.0062 (16) |
O6 | 0.0751 (15) | 0.0432 (11) | 0.137 (2) | 0.0023 (11) | 0.0486 (14) | 0.0045 (13) |
C1—C2 | 1.3365 (17) | C5—H5A | 0.9700 |
C1—O1 | 1.3579 (17) | C5—H5B | 0.9700 |
C1—C5 | 1.479 (3) | C6—N1 | 1.497 (3) |
C2—C3 | 1.4241 (19) | C6—C7 | 1.510 (3) |
C2—H2 | 0.9300 | C6—H6A | 0.9700 |
C3—C4 | 1.3255 (17) | C6—H6B | 0.9700 |
C3—H3 | 0.9300 | C7—S1 | 1.785 (3) |
C4—O1 | 1.3616 (18) | C7—H7A | 0.9700 |
C4—H4 | 0.9300 | C7—H7B | 0.9700 |
O1'—C4' | 1.3528 (18) | N1—H1A | 0.9000 |
O1'—C1' | 1.3636 (18) | N1—H1B | 0.9000 |
C1'—C2' | 1.3288 (17) | O2—S1 | 1.4579 (19) |
C1'—C5 | 1.476 (3) | O3—S1 | 1.449 (2) |
C2'—C3' | 1.4210 (18) | O4—S1 | 1.460 (2) |
C2'—H2' | 0.9300 | C8—O6 | 1.371 (3) |
C3'—C4' | 1.3242 (17) | C8—H8A | 0.9600 |
C3'—H3' | 0.9300 | C8—H8B | 0.9600 |
C4'—H4' | 0.9300 | C8—H8C | 0.9600 |
C5—N1 | 1.494 (3) | O6—H6 | 0.8200 |
C2—C1—O1 | 109.4 | N1—C5—H5B | 96.4 |
C2—C1—C5 | 133.87 (18) | H5A—C5—H5B | 110.4 |
O1—C1—C5 | 116.63 (19) | N1—C6—C7 | 111.21 (18) |
C1—C2—C3 | 108.6 | N1—C6—H6A | 109.4 |
C1—C2—H2 | 125.7 | C7—C6—H6A | 109.4 |
C3—C2—H2 | 125.7 | N1—C6—H6B | 109.4 |
C4—C3—C2 | 103.7 | C7—C6—H6B | 109.4 |
C4—C3—H3 | 128.2 | H6A—C6—H6B | 108.0 |
C2—C3—H3 | 128.2 | C6—C7—S1 | 111.39 (15) |
C3—C4—O1 | 113.0 | C6—C7—H7A | 109.3 |
C3—C4—H4 | 123.5 | S1—C7—H7A | 109.3 |
O1—C4—H4 | 123.5 | C6—C7—H7B | 109.3 |
C1—O1—C4 | 105.4 | S1—C7—H7B | 109.3 |
C4'—O1'—C1' | 105.2 | H7A—C7—H7B | 108.0 |
C2'—C1'—O1' | 108.7 | C5—N1—C6 | 111.57 (17) |
C2'—C1'—C5 | 134.33 (19) | C5—N1—H1A | 109.3 |
O1'—C1'—C5 | 116.98 (18) | C6—N1—H1A | 109.3 |
C1'—C2'—C3' | 109.6 | C5—N1—H1B | 109.3 |
C1'—C2'—H2' | 125.2 | C6—N1—H1B | 109.3 |
C3'—C2'—H2' | 125.2 | H1A—N1—H1B | 108.0 |
C4'—C3'—C2' | 102.7 | O3—S1—O2 | 113.08 (11) |
C4'—C3'—H3' | 128.6 | O3—S1—O4 | 113.72 (12) |
C2'—C3'—H3' | 128.6 | O2—S1—O4 | 111.38 (12) |
C3'—C4'—O1' | 113.8 | O3—S1—C7 | 105.68 (11) |
C3'—C4'—H4' | 123.1 | O2—S1—C7 | 106.36 (11) |
O1'—C4'—H4' | 123.1 | O4—S1—C7 | 105.89 (11) |
C1'—C5—N1 | 114.81 (19) | O6—C8—H8A | 109.5 |
C1—C5—N1 | 112.44 (19) | O6—C8—H8B | 109.5 |
C1'—C5—H5A | 115.6 | H8A—C8—H8B | 109.5 |
C1—C5—H5A | 117.6 | O6—C8—H8C | 109.5 |
N1—C5—H5A | 119.2 | H8A—C8—H8C | 109.5 |
C1'—C5—H5B | 95.2 | H8B—C8—H8C | 109.5 |
C1—C5—H5B | 95.5 | C8—O6—H6 | 109.5 |
O1—C1—C2—C3 | 0.2 | O1'—C1'—C5—C1 | −105.89 (12) |
C5—C1—C2—C3 | −175.1 (3) | C2'—C1'—C5—N1 | 71.6 (3) |
C1—C2—C3—C4 | −0.4 | O1'—C1'—C5—N1 | −108.9 (2) |
C2—C3—C4—O1 | 0.4 | C2—C1—C5—C1' | 72.75 (19) |
C2—C1—O1—C4 | 0.0 | O1—C1—C5—C1' | −102.27 (13) |
C5—C1—O1—C4 | 176.2 (2) | C2—C1—C5—N1 | −110.2 (2) |
C3—C4—O1—C1 | −0.3 | O1—C1—C5—N1 | 74.7 (2) |
C4'—O1'—C1'—C2' | 0.0 | N1—C6—C7—S1 | −174.72 (15) |
C4'—O1'—C1'—C5 | −179.6 (2) | C1'—C5—N1—C6 | 176.54 (19) |
O1'—C1'—C2'—C3' | −0.2 | C1—C5—N1—C6 | 176.41 (18) |
C5—C1'—C2'—C3' | 179.3 (3) | C7—C6—N1—C5 | 169.8 (2) |
C1'—C2'—C3'—C4' | 0.3 | C6—C7—S1—O3 | 172.61 (17) |
C2'—C3'—C4'—O1' | −0.3 | C6—C7—S1—O2 | −66.9 (2) |
C1'—O1'—C4'—C3' | 0.2 | C6—C7—S1—O4 | 51.7 (2) |
C2'—C1'—C5—C1 | 74.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O6i | 0.90 | 1.92 | 2.767 (3) | 156 |
N1—H1B···O2ii | 0.90 | 2.15 | 2.940 (3) | 147 |
N1—H1B···O2iii | 0.90 | 2.39 | 3.039 (3) | 129 |
O6—H6···O4iv | 0.82 | 1.90 | 2.720 (3) | 175 |
Symmetry codes: (i) x, y−1, z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H11NO4S·CH4O |
Mr | 237.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 10.729 (10), 9.174 (8), 11.27 (1) |
β (°) | 91.964 (10) |
V (Å3) | 1108.6 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.39 × 0.23 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.894, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7971, 2056, 1675 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.109, 1.06 |
No. of reflections | 2056 |
No. of parameters | 131 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.31 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O6i | 0.90 | 1.92 | 2.767 (3) | 155.7 |
N1—H1B···O2ii | 0.90 | 2.15 | 2.940 (3) | 146.9 |
N1—H1B···O2iii | 0.90 | 2.39 | 3.039 (3) | 128.6 |
O6—H6···O4iv | 0.82 | 1.90 | 2.720 (3) | 174.7 |
Symmetry codes: (i) x, y−1, z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770. CAS Google Scholar
Jiang, Y.-M., Zeng, J.-L. & Yu, K.-B. (2004). Acta Cryst. C60, m543–m545. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, J.-X., Jiang, Y.-M. & Chen, M.-J. (2008a). J. Coord. Chem. 61, 1765–1773. Web of Science CSD CrossRef CAS Google Scholar
Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006a). Acta Cryst. E62, m2984–m2986. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008b). J. Chem. Crystallogr. 38, 711–715. Web of Science CSD CrossRef CAS Google Scholar
Li, J.-X., Jiang, Y.-M. & Liao, B.-L. (2006b). Acta Cryst. E62, o5609–o5611. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213–m215. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601–m603. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J.-M., Jiang, Y.-M., Wang, Y.-F. & Liang, D.-W. (2005). Acta Cryst. E61, m2160–m2162. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeng, J.-L., Jiang, Y.-M. & Yu, K.-B. (2003). Acta Cryst. E59, m1137–m1139. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-H., Jiang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, m209–m211. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the previous literatures, a number of reduced or unreduced Schiff base complexes derived from taurine have been reported (Jiang et al., 2004, 2006; Li et al., 2005, 2006a, 2007a,b, 2008a,b); Liao et al., 2007; Zeng et al., 2003; Zhang et al., 2005), and they have shown novel chain (Li et al., 2007b), cubical (Li et al., 2008a) and isomeric (Li et al., 2008b) structures except for the commonly seen mononuclear or binuclear compounds. Taurine, an amino acid containing sulfur, is indispensable to human beings and has important physiological functions. However, there have been sparse reports on the crystal structures of the corresponding free Schiff base ligands so far. In this paper, we report the crystal structure of a reduced Schiff base from taurine, (I) (Fig. 1).
The H atom of the sulfonic acid group is transferred to the amino N atom, forming the zwitterionic amino acid. This structure is completely similar to that of 2-(2-pyridylmethylammonio)ethanesulfonate dihydrate (Li et al., 2006b), where the H atom of the sulfonic acid group is also transferred to the amino N atom. The difference between them is that the furan ring here is positionally disordered. The two positions of furan ring have a dihedral angle of 180°. Other bond length and angles are in good agreement. Methanol molecules are involved in hydrogen bonds both as donors and acceptors, whereas ammonium acts only as a double donor (Table 1, Fig.2). Fig. 3 shows the crystal packing of (I), with hydrogen bonds as dashed lines in ac plane. The crystal of (I) is stabilized via these intermolecular hydrogen bonding interactions.