organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Oxopent-2-en-2-yl­amino)-1,2,4-triazol-1-ium-5-thiol­ate

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: sci.yqzhang@gzu.edu.cn

(Received 24 May 2009; accepted 25 May 2009; online 6 June 2009)

In the title compound, C8H12N4OS, an intra­molecular N—H⋯O hydrogen bond links the imine N atom to the oxo O atom. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯S hydrogen bonds, forming a two-dimensional framework.

Related literature

For Schiff base metal complexes, see: Lacroix (2001[Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339-348.]); Sabater et al. (2001[Sabater, M. J., Alvaro, M., Garcia, H., Palomares, E. & Scaiano, J. C. (2001). J. Am. Chem. Soc. 123, 7074-7080.]). For the use of 1,2,4-triazole and its derivatives as ligands to bridge metal ions, see: Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33-43.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N4OS

  • Mr = 212.28

  • Monoclinic, P 21 /n

  • a = 10.620 (6) Å

  • b = 9.520 (5) Å

  • c = 10.764 (5) Å

  • β = 99.560 (14)°

  • V = 1073.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.952

  • 9199 measured reflections

  • 2071 independent reflections

  • 1688 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.06

  • 2071 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.03 2.659 (2) 130
N1—H1⋯S1i 0.86 2.81 3.4127 (19) 129
N3—H3A⋯O1ii 0.86 1.93 2.772 (2) 166
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base metal complexes have been widely investigated for their properties and applications in different fields, catalysis (Sabater et al., 2001), materials chemistry (Lacroix 2001) and simple organic molecules, such as 1,2,4-triazole and its derivatives, which usually studied as precursors of compounds with importance in medicine biology and industry, have gained more and more interest as ligands to bridge metal ions due to their potential bridging fashions (Yi et al., 2004). In this work, we report a crystal structure of 3-methyl-4-amino-5-mercapto-1,2,4- triazole, (I).

The crystal structure of the title compound is shown in Fig. 1. The molecule is a non-coplanar structure, an intramolecular N1—H1···O1 hydrogen bonds linking the amines N1 atoms to the enolic O1 atoms. As shown in Fig. 2, the molecules of the title compound are lined up by the intermolecular N1—H1···S1 and N3—H3A···O1 interactions (Table 2) forming a two-dimensional framework.

Related literature top

For Schiff base metal complexes, see: Lacroix (2001); Sabater et al. (2001). For the use of 1,2,4-triazole and its derivatives as ligands to bridge metal ions, see: Yi et al. (2004).

Experimental top

Acetylacetone (1.0 g, 10 mmol) was added to an ethanol solution containing 3-methyl-4-amino-5-mercapto-1,2,4-triazole (1.3 g, 10 mmol). The mixture was heated, stirring for 24 h. The yellow residue yielded and was removed from the solution by filtration, washing with ethanol 3 times, 1.47 g, in a yield of 69%. Single crystals suitable for X-ray diffraction were obtained from an ethanol-CH2Cl2 mixture (1:1, v:v) by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.96 Å, N—H = 0.8600 Å, and Uiso(H) = 1.2–1.5Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-(4-Oxopent-2-en-2-ylamino)-1,2,4-triazol-1-ium-5-thiolate top
Crystal data top
C8H12N4OSF(000) = 448
Mr = 212.28Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9199 reflections
a = 10.620 (6) Åθ = 2.5–26.0°
b = 9.520 (5) ŵ = 0.28 mm1
c = 10.764 (5) ÅT = 293 K
β = 99.560 (14)°Prism, yellow
V = 1073.2 (10) Å30.26 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2071 independent reflections
Radiation source: fine-focus sealed tube1688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1213
Tmin = 0.932, Tmax = 0.952k = 1111
9199 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3337P]
where P = (Fo2 + 2Fc2)/3
2071 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H12N4OSV = 1073.2 (10) Å3
Mr = 212.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.620 (6) ŵ = 0.28 mm1
b = 9.520 (5) ÅT = 293 K
c = 10.764 (5) Å0.26 × 0.23 × 0.18 mm
β = 99.560 (14)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2071 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1688 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.952Rint = 0.030
9199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2071 reflectionsΔρmin = 0.22 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6978 (2)0.4476 (2)0.6177 (2)0.0581 (6)
H1A0.63850.48040.66950.087*
H1B0.72300.52460.56970.087*
H1C0.77170.40920.67020.087*
C20.63580 (17)0.3365 (2)0.53014 (16)0.0413 (4)
C30.51805 (18)0.2824 (2)0.53712 (17)0.0474 (5)
H30.47810.31330.60270.057*
C40.45166 (17)0.1828 (2)0.45229 (17)0.0437 (4)
C50.31956 (19)0.1390 (3)0.4704 (2)0.0598 (6)
H5A0.25740.19660.41910.090*
H5B0.31130.15000.55730.090*
H5C0.30580.04230.44640.090*
C60.9660 (2)0.1873 (2)0.5572 (2)0.0579 (5)
H6A1.05510.16440.56770.087*
H6B0.91620.10480.53180.087*
H6C0.94570.22120.63550.087*
C70.93642 (17)0.29676 (19)0.45994 (16)0.0420 (4)
C80.81958 (17)0.45095 (18)0.33090 (15)0.0377 (4)
N10.70361 (13)0.28695 (16)0.44362 (13)0.0430 (4)
H10.67610.21360.40100.052*
N20.81498 (13)0.34888 (15)0.42069 (13)0.0381 (3)
N30.94393 (14)0.45391 (16)0.32250 (14)0.0445 (4)
H3A0.97530.50920.27230.053*
N41.01765 (14)0.35996 (17)0.40183 (15)0.0483 (4)
O10.49708 (12)0.13376 (15)0.36199 (13)0.0536 (4)
S10.69902 (5)0.54628 (5)0.25545 (4)0.04948 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0537 (13)0.0681 (14)0.0536 (11)0.0014 (10)0.0118 (10)0.0165 (10)
C20.0402 (10)0.0460 (10)0.0389 (9)0.0044 (8)0.0103 (8)0.0013 (7)
C30.0418 (11)0.0602 (12)0.0439 (10)0.0030 (9)0.0180 (8)0.0033 (9)
C40.0370 (10)0.0495 (11)0.0474 (10)0.0029 (8)0.0151 (8)0.0062 (8)
C50.0426 (12)0.0754 (15)0.0653 (13)0.0085 (10)0.0198 (10)0.0014 (11)
C60.0566 (13)0.0560 (12)0.0597 (12)0.0071 (10)0.0055 (10)0.0110 (10)
C70.0369 (10)0.0440 (10)0.0447 (9)0.0003 (8)0.0055 (8)0.0035 (8)
C80.0379 (10)0.0402 (9)0.0360 (8)0.0018 (7)0.0089 (7)0.0040 (7)
N10.0388 (9)0.0446 (9)0.0490 (8)0.0086 (7)0.0175 (7)0.0082 (7)
N20.0316 (8)0.0411 (8)0.0427 (8)0.0030 (6)0.0092 (6)0.0012 (6)
N30.0359 (9)0.0500 (9)0.0493 (9)0.0028 (7)0.0116 (7)0.0062 (7)
N40.0339 (8)0.0570 (10)0.0536 (9)0.0008 (7)0.0059 (7)0.0037 (7)
O10.0461 (8)0.0604 (9)0.0591 (8)0.0084 (6)0.0223 (7)0.0143 (7)
S10.0430 (3)0.0588 (3)0.0476 (3)0.0104 (2)0.0103 (2)0.0053 (2)
Geometric parameters (Å, º) top
C1—C21.495 (3)C6—C71.474 (3)
C1—H1A0.9600C6—H6A0.9600
C1—H1B0.9600C6—H6B0.9600
C1—H1C0.9600C6—H6C0.9600
C2—N11.353 (2)C7—N41.295 (2)
C2—C31.366 (3)C7—N21.381 (2)
C3—C41.420 (3)C8—N31.339 (2)
C3—H30.9300C8—N21.377 (2)
C4—O11.245 (2)C8—S11.6664 (19)
C4—C51.507 (3)N1—N21.380 (2)
C5—H5A0.9600N1—H10.8600
C5—H5B0.9600N3—N41.386 (2)
C5—H5C0.9600N3—H3A0.8600
C2—C1—H1A109.5C7—C6—H6B109.5
C2—C1—H1B109.5H6A—C6—H6B109.5
H1A—C1—H1B109.5C7—C6—H6C109.5
C2—C1—H1C109.5H6A—C6—H6C109.5
H1A—C1—H1C109.5H6B—C6—H6C109.5
H1B—C1—H1C109.5N4—C7—N2110.40 (16)
N1—C2—C3120.20 (17)N4—C7—C6126.26 (17)
N1—C2—C1116.86 (17)N2—C7—C6123.32 (16)
C3—C2—C1122.92 (17)N3—C8—N2102.27 (15)
C2—C3—C4125.30 (16)N3—C8—S1129.95 (14)
C2—C3—H3117.4N2—C8—S1127.77 (14)
C4—C3—H3117.4C2—N1—N2122.95 (15)
O1—C4—C3122.48 (17)C2—N1—H1118.5
O1—C4—C5119.12 (18)N2—N1—H1118.5
C3—C4—C5118.38 (17)C8—N2—N1123.94 (14)
C4—C5—H5A109.5C8—N2—C7109.16 (14)
C4—C5—H5B109.5N1—N2—C7125.19 (15)
H5A—C5—H5B109.5C8—N3—N4114.05 (15)
C4—C5—H5C109.5C8—N3—H3A123.0
H5A—C5—H5C109.5N4—N3—H3A123.0
H5B—C5—H5C109.5C7—N4—N3104.12 (15)
C7—C6—H6A109.5
N1—C2—C3—C45.7 (3)C2—N1—N2—C7105.0 (2)
C1—C2—C3—C4176.25 (19)N4—C7—N2—C80.6 (2)
C2—C3—C4—O10.7 (3)C6—C7—N2—C8179.02 (17)
C2—C3—C4—C5177.3 (2)N4—C7—N2—N1166.12 (16)
C3—C2—N1—N2171.33 (16)C6—C7—N2—N115.5 (3)
C1—C2—N1—N210.5 (3)N2—C8—N3—N40.11 (19)
N3—C8—N2—N1166.02 (14)S1—C8—N3—N4179.01 (13)
S1—C8—N2—N114.8 (2)N2—C7—N4—N30.62 (19)
N3—C8—N2—C70.27 (18)C6—C7—N4—N3178.99 (18)
S1—C8—N2—C7179.42 (13)C8—N3—N4—C70.5 (2)
C2—N1—N2—C891.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.032.659 (2)130
N1—H1···S1i0.862.813.4127 (19)129
N3—H3A···O1ii0.861.932.772 (2)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12N4OS
Mr212.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.620 (6), 9.520 (5), 10.764 (5)
β (°) 99.560 (14)
V3)1073.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.26 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.932, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
9199, 2071, 1688
Rint0.030
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.06
No. of reflections2071
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.032.659 (2)129.8
N1—H1···S1i0.862.813.4127 (19)128.9
N3—H3A···O1ii0.861.932.772 (2)165.9
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the support of the Natural Science Foundation and the International Cooperation Foundation of Guizhou Province.

References

First citationBruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339–348.  CrossRef Google Scholar
First citationSabater, M. J., Alvaro, M., Garcia, H., Palomares, E. & Scaiano, J. C. (2001). J. Am. Chem. Soc. 123, 7074–7080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds