metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­nickel(II)]-μ-7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 25 May 2009; accepted 9 June 2009; online 17 June 2009)

In the crystal structure of the title compound, [Ni(C8H8O5)(H2O)2]n, the NiII cation is in a Jahn–Teller-distorted octahedral coordination environment binding to two O atoms from water molecules, the bridging O atom of the bicycloheptane unit, two carboxylate O atoms from different carboxylate groups and one carboxylate O atom from a symmetry-related bridging ligand. The crystal structure is made up from layers propagating parallel to the bc plane.

Related literature

For the structure of the Cu(II) analogue, see: Wang et al. (2009[Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2009). Acta Cryst. E65, m169.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8O5)(H2O)2]

  • Mr = 278.89

  • Monoclinic, P 21 /c

  • a = 10.9145 (2) Å

  • b = 8.6281 (2) Å

  • c = 10.8581 (2) Å

  • β = 107.351 (1)°

  • V = 975.99 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 296 K

  • 0.27 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.618, Tmax = 0.817

  • 7972 measured reflections

  • 2213 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.02

  • 2213 reflections

  • 157 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.841 (15) 2.062 (15) 2.9027 (19) 180 (3)
O1W—H1WB⋯O3ii 0.822 (15) 2.135 (18) 2.7953 (17) 137 (2)
O1W—H1WB⋯O1iii 0.822 (15) 2.366 (19) 3.1013 (17) 149 (2)
O2W—H2WA⋯O4i 0.824 (16) 1.888 (16) 2.6967 (19) 167 (3)
O2W—H2WB⋯O2ii 0.802 (16) 2.341 (16) 3.135 (2) 170 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is isostructural with the Cu(II) analogue (Wang et al., 2009). In the title compound, each NiII ion is six-coordinated by two oxygen atoms from water, one bridge oxygen, two carboxylate oxygen atoms in two different carboxylate groups and one carboxylate oxygen atom in another asymmetric unit. O1, O1W, O5 and O3 lie in the equatorial plane with the torsion angle -1.121 (47)°. O2W and carboxylate oxygen atom O4 are in the axial positions. The bond angle of O2W—Ni1—O4 is 177.144 (52)°, so it forms a distorted octahedral. Owing to the binding of the bridge oxygen atom with Ni, two six-membered rings(Ni1/O4/C8/C6/C5/O5 and Ni1/O3/C7/C1/C2/O5) are created. In addition, a seven-membered ring (Ni1/O3/C7/C1/C6/C8/O4) is formed because of the coordination of carboxylate oxygen atoms O3 and O4. What's more, intermolecular O—H···O hydrogen bonds of the complex make the crystal structure more stable (Table 1).

Related literature top

For the structure of the Cu(II) analogue, see: Wang et al. (2009).

Experimental top

A mixture of 1 mmol norcantharidin, 1 mmol NiCl2.6H2O and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block green crystals were obtained.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.97-0.98 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
catena-Poly[[diaquanickel(II)]-µ-7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato] top
Crystal data top
[Ni(C8H8O5)(H2O)2]F(000) = 576
Mr = 278.89Dx = 1.898 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4375 reflections
a = 10.9145 (2) Åθ = 2.0–27.5°
b = 8.6281 (2) ŵ = 2.01 mm1
c = 10.8581 (2) ÅT = 296 K
β = 107.351 (1)°Block, green
V = 975.99 (3) Å30.27 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2213 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.618, Tmax = 0.817k = 116
7972 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.032P)2 + 0.4246P]
where P = (Fo2 + 2Fc2)/3
2213 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(C8H8O5)(H2O)2]V = 975.99 (3) Å3
Mr = 278.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9145 (2) ŵ = 2.01 mm1
b = 8.6281 (2) ÅT = 296 K
c = 10.8581 (2) Å0.27 × 0.20 × 0.10 mm
β = 107.351 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2213 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1961 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.817Rint = 0.019
7972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0226 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
2213 reflectionsΔρmin = 0.30 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73787 (15)0.1019 (2)0.71021 (15)0.0214 (3)
H1A0.77100.20530.70050.026*
C20.75289 (16)0.0067 (2)0.60404 (16)0.0234 (3)
H2A0.68160.00080.52400.028*
C30.88388 (17)0.0131 (2)0.58426 (19)0.0329 (4)
H3A0.88880.04020.50720.039*
H3B0.90480.12160.57890.039*
C40.97214 (18)0.0632 (3)0.7078 (2)0.0375 (5)
H4A1.03240.01100.75990.045*
H4B1.01920.14980.68720.045*
C50.87589 (15)0.1175 (2)0.77610 (17)0.0265 (4)
H5A0.90730.20340.83630.032*
C60.82547 (16)0.0207 (2)0.83620 (16)0.0234 (3)
H6A0.89660.08910.88050.028*
C70.59962 (14)0.1119 (2)0.71114 (15)0.0202 (3)
C80.75095 (16)0.0292 (2)0.92900 (15)0.0242 (4)
O1W0.69190 (12)0.44064 (15)0.74994 (13)0.0289 (3)
H1WA0.711 (2)0.473 (3)0.6846 (18)0.043*
H1WB0.643 (2)0.505 (2)0.765 (2)0.043*
O10.56501 (12)0.23749 (14)0.74852 (12)0.0244 (3)
O2W0.51314 (14)0.29376 (19)0.53124 (13)0.0383 (3)
H2WA0.557 (2)0.322 (3)0.486 (2)0.057*
H2WB0.4472 (17)0.342 (3)0.512 (2)0.057*
O20.75780 (15)0.05131 (17)1.02529 (12)0.0389 (3)
O30.52811 (11)0.00446 (14)0.67765 (13)0.0272 (3)
O40.68270 (12)0.15134 (16)0.89954 (11)0.0302 (3)
O50.76514 (11)0.15762 (14)0.66735 (11)0.0236 (3)
Ni10.601796 (19)0.22532 (2)0.714683 (19)0.01937 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (8)0.0212 (8)0.0245 (8)0.0010 (6)0.0109 (6)0.0017 (6)
C20.0216 (8)0.0296 (9)0.0221 (8)0.0007 (7)0.0111 (6)0.0032 (7)
C30.0287 (9)0.0413 (11)0.0364 (10)0.0019 (8)0.0217 (8)0.0008 (8)
C40.0218 (9)0.0503 (13)0.0452 (11)0.0038 (8)0.0172 (8)0.0003 (10)
C50.0196 (8)0.0318 (10)0.0285 (9)0.0051 (7)0.0080 (7)0.0037 (7)
C60.0194 (7)0.0285 (9)0.0225 (8)0.0031 (7)0.0066 (6)0.0014 (7)
C70.0218 (8)0.0217 (8)0.0194 (8)0.0035 (6)0.0098 (6)0.0058 (6)
C80.0240 (8)0.0299 (9)0.0181 (8)0.0004 (7)0.0053 (6)0.0013 (7)
O1W0.0290 (7)0.0249 (7)0.0357 (7)0.0008 (5)0.0145 (6)0.0014 (5)
O10.0236 (6)0.0228 (6)0.0306 (6)0.0026 (5)0.0138 (5)0.0003 (5)
O2W0.0377 (8)0.0566 (10)0.0238 (7)0.0112 (7)0.0144 (6)0.0103 (6)
O20.0555 (9)0.0399 (8)0.0258 (7)0.0123 (7)0.0187 (6)0.0097 (6)
O30.0220 (6)0.0209 (6)0.0421 (7)0.0007 (5)0.0145 (5)0.0011 (5)
O40.0364 (7)0.0357 (8)0.0218 (6)0.0119 (6)0.0137 (5)0.0046 (5)
O50.0234 (6)0.0249 (6)0.0254 (6)0.0001 (5)0.0118 (5)0.0019 (5)
Ni10.02056 (12)0.02009 (13)0.01992 (12)0.00083 (8)0.00979 (9)0.00170 (8)
Geometric parameters (Å, º) top
C1—C71.514 (2)C6—H6A0.9800
C1—C21.532 (2)C7—O11.254 (2)
C1—C61.580 (2)C7—O31.257 (2)
C1—H1A0.9800C8—O21.239 (2)
C2—O51.460 (2)C8—O41.275 (2)
C2—C31.517 (2)O1W—Ni12.0834 (13)
C2—H2A0.9800O1W—H1WA0.841 (15)
C3—C41.546 (3)O1W—H1WB0.822 (15)
C3—H3A0.9700O1—Ni1i2.0027 (12)
C3—H3B0.9700O2W—Ni12.0255 (13)
C4—C51.529 (2)O2W—H2WA0.824 (16)
C4—H4A0.9700O2W—H2WB0.802 (16)
C4—H4B0.9700O3—Ni12.0608 (12)
C5—O51.457 (2)O4—Ni12.0393 (12)
C5—C61.538 (2)O5—Ni12.0809 (11)
C5—H5A0.9800Ni1—O1ii2.0027 (12)
C6—C81.533 (2)
C7—C1—C2111.72 (13)C1—C6—H6A110.1
C7—C1—C6111.48 (13)O1—C7—O3124.24 (14)
C2—C1—C6101.96 (13)O1—C7—C1116.61 (15)
C7—C1—H1A110.5O3—C7—C1119.13 (15)
C2—C1—H1A110.5O2—C8—O4123.98 (16)
C6—C1—H1A110.5O2—C8—C6119.16 (16)
O5—C2—C3102.07 (14)O4—C8—C6116.85 (14)
O5—C2—C1101.93 (12)Ni1—O1W—H1WA110.9 (17)
C3—C2—C1110.77 (14)Ni1—O1W—H1WB109.8 (17)
O5—C2—H2A113.6H1WA—O1W—H1WB106.5 (19)
C3—C2—H2A113.6C7—O1—Ni1i125.62 (11)
C1—C2—H2A113.6Ni1—O2W—H2WA119.0 (17)
C2—C3—C4101.47 (14)Ni1—O2W—H2WB122.3 (17)
C2—C3—H3A111.5H2WA—O2W—H2WB109 (2)
C4—C3—H3A111.5C7—O3—Ni1120.63 (11)
C2—C3—H3B111.5C8—O4—Ni1123.69 (11)
C4—C3—H3B111.5C5—O5—C296.15 (13)
H3A—C3—H3B109.3C5—O5—Ni1115.54 (9)
C5—C4—C3102.17 (14)C2—O5—Ni1113.69 (9)
C5—C4—H4A111.3O1ii—Ni1—O2W87.33 (6)
C3—C4—H4A111.3O1ii—Ni1—O490.36 (5)
C5—C4—H4B111.3O2W—Ni1—O4177.14 (6)
C3—C4—H4B111.3O1ii—Ni1—O382.07 (5)
H4A—C4—H4B109.2O2W—Ni1—O391.92 (6)
O5—C5—C4101.75 (14)O4—Ni1—O386.09 (5)
O5—C5—C6102.27 (13)O1ii—Ni1—O5172.30 (5)
C4—C5—C6110.67 (16)O2W—Ni1—O591.84 (5)
O5—C5—H5A113.7O4—Ni1—O590.22 (5)
C4—C5—H5A113.7O3—Ni1—O590.31 (5)
C6—C5—H5A113.7O1ii—Ni1—O1W103.17 (5)
C8—C6—C5112.87 (15)O2W—Ni1—O1W88.95 (6)
C8—C6—C1113.00 (13)O4—Ni1—O1W93.22 (5)
C5—C6—C1100.21 (13)O3—Ni1—O1W174.73 (5)
C8—C6—H6A110.1O5—Ni1—O1W84.46 (5)
C5—C6—H6A110.1
C7—C1—C2—O585.11 (15)C6—C8—O4—Ni128.8 (2)
C6—C1—C2—O534.06 (14)C4—C5—O5—C256.04 (15)
C7—C1—C2—C3166.92 (14)C6—C5—O5—C258.43 (14)
C6—C1—C2—C373.92 (16)C4—C5—O5—Ni1176.00 (11)
O5—C2—C3—C435.96 (17)C6—C5—O5—Ni161.53 (14)
C1—C2—C3—C471.93 (18)C3—C2—O5—C557.44 (14)
C2—C3—C4—C51.3 (2)C1—C2—O5—C557.12 (13)
C3—C4—C5—O533.65 (19)C3—C2—O5—Ni1178.84 (10)
C3—C4—C5—C674.44 (18)C1—C2—O5—Ni164.27 (13)
O5—C5—C6—C884.19 (16)C8—O4—Ni1—O1ii133.87 (14)
C4—C5—C6—C8168.06 (15)C8—O4—Ni1—O2W97.8 (11)
O5—C5—C6—C136.27 (15)C8—O4—Ni1—O351.85 (14)
C4—C5—C6—C171.48 (16)C8—O4—Ni1—O538.45 (14)
C7—C1—C6—C80.2 (2)C8—O4—Ni1—O1W122.91 (14)
C2—C1—C6—C8119.17 (15)C7—O3—Ni1—O1ii141.13 (13)
C7—C1—C6—C5120.54 (14)C7—O3—Ni1—O2W131.83 (12)
C2—C1—C6—C51.20 (15)C7—O3—Ni1—O450.22 (12)
C2—C1—C7—O1149.60 (15)C7—O3—Ni1—O539.98 (12)
C6—C1—C7—O197.04 (17)C7—O3—Ni1—O1W32.4 (6)
C2—C1—C7—O331.8 (2)C5—O5—Ni1—O1ii105.7 (4)
C6—C1—C7—O381.59 (18)C2—O5—Ni1—O1ii4.1 (4)
C5—C6—C8—O2145.66 (17)C5—O5—Ni1—O2W170.59 (12)
C1—C6—C8—O2101.50 (19)C2—O5—Ni1—O2W79.56 (11)
C5—C6—C8—O435.8 (2)C5—O5—Ni1—O411.38 (12)
C1—C6—C8—O477.0 (2)C2—O5—Ni1—O498.46 (11)
O3—C7—O1—Ni1i8.3 (2)C5—O5—Ni1—O397.47 (11)
C1—C7—O1—Ni1i170.29 (10)C2—O5—Ni1—O312.37 (10)
O1—C7—O3—Ni1145.58 (13)C5—O5—Ni1—O1W81.83 (12)
C1—C7—O3—Ni132.95 (18)C2—O5—Ni1—O1W168.33 (11)
O2—C8—O4—Ni1149.69 (15)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.84 (2)2.06 (2)2.9027 (19)180 (3)
O1W—H1WB···O3ii0.82 (2)2.14 (2)2.7953 (17)137 (2)
O1W—H1WB···O1iv0.82 (2)2.37 (2)3.1013 (17)149 (2)
O2W—H2WA···O4iii0.82 (2)1.89 (2)2.6967 (19)167 (3)
O2W—H2WB···O2ii0.80 (2)2.34 (2)3.135 (2)170 (2)
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H8O5)(H2O)2]
Mr278.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.9145 (2), 8.6281 (2), 10.8581 (2)
β (°) 107.351 (1)
V3)975.99 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.27 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.618, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
7972, 2213, 1961
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.02
No. of reflections2213
No. of parameters157
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.841 (15)2.062 (15)2.9027 (19)180 (3)
O1W—H1WB···O3ii0.822 (15)2.135 (18)2.7953 (17)137 (2)
O1W—H1WB···O1iii0.822 (15)2.366 (19)3.1013 (17)149 (2)
O2W—H2WA···O4i0.824 (16)1.888 (16)2.6967 (19)167 (3)
O2W—H2WB···O2ii0.802 (16)2.341 (16)3.135 (2)170 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2009). Acta Cryst. E65, m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds