metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-pyridylmethyl­amino)ethane­sulfonato-κ3N,N′,O]zinc(II)

aDepartment of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 25 May 2009; accepted 26 May 2009; online 6 June 2009)

The title mononuclear complex, [Zn(C8H11N2O3S)2], is a zinc salt of 2-(2-pyridylmethyl­amino)ethane­sulfonic acid (Hpmt). The ZnII ion is located on an inversion centre and is octahedrally surrounded by four N and two O atoms. The deprotonated pmt anion coordinates in a facial arrangement through its two N atoms and one of the sulfonate O atoms. The crystal packing is determined by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the structures of the Co(II) and Ni(II) analogues, see: Li et al. (2008[Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008). J. Chem. Crystallogr. 38, 711-715.]); Liao et al. (2007[Liao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974.]). For the preparation of the Hpmt ligand, see: Li et al. (2006[Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H11N2O3S)2]

  • Mr = 495.87

  • Monoclinic, P 21 /c

  • a = 9.6288 (13) Å

  • b = 10.0047 (13) Å

  • c = 11.3624 (15) Å

  • β = 105.965 (1)°

  • V = 1052.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 291 K

  • 0.50 × 0.39 × 0.29 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.540, Tmax = 0.689

  • 6318 measured reflections

  • 2419 independent reflections

  • 2221 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.07

  • 2419 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.1336 (12)
Zn1—O1 2.1465 (11)
Zn1—N1 2.2130 (13)
N2—Zn1—O1 92.40 (5)
N2i—Zn1—O1 87.60 (4)
N2—Zn1—N1i 101.93 (5)
O1—Zn1—N1i 89.78 (5)
N2—Zn1—N1 78.06 (5)
O1—Zn1—N1 90.22 (5)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2ii 0.855 (18) 2.079 (18) 2.9259 (17) 170.6 (16)
C1—H1⋯O2iii 0.93 2.47 3.388 (2) 169
C4—H4⋯O3iv 0.93 2.49 3.324 (2) 150
C6—H6B⋯O1i 0.97 2.56 3.056 (2) 112
C8—H8B⋯O2v 0.97 2.56 3.265 (2) 130
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The complex (I) is isostructural with its analogues [Co(C8H11N2O3S)2] (Li et al., 2006), [Ni(C8H11N2O3S)2] (Liao et al., 2007) and [Cu(C8H11N2O3S)2].2H2O (Li et al., 2008), whose structures have been described in detail. The six-coordinate ZnII ion locates on a centre of symmetry with two deprotonated pmt- anions coordinate in a tridentate facial arrangement with its three donor atoms (Fig.1). The bond lengths and angles of (I) are in good agreement with its Co(II) and Ni(II) analogues (Table 1).

The N—H donor and SO acceptor groups of the pmt ions are involved in hydrogen bonding interactions and forms a two-dimensional network in the bc plane (Table 2 and Fig. 2).

Related literature top

For the structures of the Co(II) and Ni(II) analogues, see: Li et al. (2008); Liao et al. (2007). For the preparation of the Hpmt ligand, see: Li et al. (2006).

Experimental top

The ligand Hpmt was prepared according to the method of Li et al., 2006. To the solution of Hpmt (2.0 mmol, 0.43 g) in water (25 ml), solid ZnCl2 (1 mmol, 0.14 g) was added. The resulting mixture was stirred at 333 K for 5 h, then cooled to room temperature. After filtration, the filtrate was left to stand at room temperature for slow evaporation. Colourless block-shaped crystals suitable for X-ray diffraction were obtained in a yield of 42%. Analysis, found: C 38.66, H 4.37, N 11.32, S 12.95%; C16H22N4O6S2Zn requires: C 38.72, H 4.44, N 11.29, S 12.90%. IR (KBr, ν, cm-1): 771.3 [γ(C=C—H)], 746.5(γCH2); 1190.3, 1151.4, 1038.8(ν SO3-); 1607.2, 1572.3(ν C=C + ν C=N); 3198.2(ν N—H).

Refinement top

H atoms bonded to C were positioned geometrically with C—H distance of 0.93–0.97 Å, and treated as riding atoms, with Uiso(H) =1.2Ueq(C). The N—H hydrogen atom was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix A are at the symmetry position (-x, -y, -z).
[Figure 2] Fig. 2. The hydrogen bonding interactions in (I) (dashed lines) projected in bc plane. H atoms on C atoms have been omitted.
Bis[2-(2-pyridylmethylamino)ethanesulfonato- κ3N,N',O]zinc(II top
Crystal data top
[Zn(C8H11N2O3S)2]F(000) = 512
Mr = 495.87Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4168 reflections
a = 9.6288 (13) Åθ = 2.8–28.2°
b = 10.0047 (13) ŵ = 1.41 mm1
c = 11.3624 (15) ÅT = 291 K
β = 105.965 (1)°Block, colourless
V = 1052.4 (2) Å30.50 × 0.39 × 0.29 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2419 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.540, Tmax = 0.689k = 912
6318 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3355P]
where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn(C8H11N2O3S)2]V = 1052.4 (2) Å3
Mr = 495.87Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6288 (13) ŵ = 1.41 mm1
b = 10.0047 (13) ÅT = 291 K
c = 11.3624 (15) Å0.50 × 0.39 × 0.29 mm
β = 105.965 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2419 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2221 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.689Rint = 0.012
6318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
2419 reflectionsΔρmin = 0.38 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.50000.02437 (8)
S10.63235 (4)0.29294 (4)0.45567 (3)0.02858 (10)
O10.57188 (13)0.16226 (11)0.40792 (10)0.0375 (3)
O20.55332 (14)0.40018 (12)0.37950 (10)0.0428 (3)
O30.78676 (14)0.30037 (16)0.47547 (13)0.0573 (4)
N10.27433 (14)0.03618 (13)0.39160 (12)0.0309 (3)
N20.42452 (13)0.13247 (12)0.61609 (11)0.0274 (3)
C10.2143 (2)0.02195 (18)0.27020 (16)0.0412 (4)
H10.26770.01850.22320.049*
C20.0760 (2)0.0655 (3)0.2137 (2)0.0633 (6)
H20.03700.05490.12970.076*
C30.0031 (2)0.1249 (3)0.2834 (2)0.0746 (7)
H30.09610.15580.24680.090*
C40.05670 (19)0.1385 (2)0.4085 (2)0.0584 (5)
H40.00440.17750.45710.070*
C50.19633 (16)0.09248 (16)0.45981 (15)0.0350 (3)
C60.26892 (17)0.10136 (17)0.59524 (15)0.0360 (3)
H6A0.22330.17070.63130.043*
H6B0.25840.01710.63420.043*
C70.44409 (17)0.27835 (15)0.59923 (13)0.0303 (3)
H7A0.41840.32730.66390.036*
H7B0.37960.30660.52170.036*
C80.59850 (16)0.31189 (15)0.60131 (13)0.0292 (3)
H8A0.66370.25420.65990.035*
H8B0.61900.40340.62870.035*
H1N0.4634 (18)0.1133 (17)0.6913 (16)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02484 (13)0.02218 (13)0.02641 (12)0.00349 (8)0.00760 (9)0.00102 (8)
S10.03239 (19)0.02599 (19)0.02848 (17)0.00050 (14)0.01027 (14)0.00143 (13)
O10.0591 (7)0.0267 (6)0.0308 (5)0.0037 (5)0.0194 (5)0.0023 (4)
O20.0672 (8)0.0301 (6)0.0319 (5)0.0094 (5)0.0148 (5)0.0068 (5)
O30.0353 (7)0.0786 (11)0.0625 (8)0.0049 (6)0.0208 (6)0.0068 (7)
N10.0272 (6)0.0305 (6)0.0330 (6)0.0024 (5)0.0051 (5)0.0010 (5)
N20.0307 (6)0.0268 (6)0.0253 (6)0.0022 (5)0.0087 (5)0.0003 (5)
C10.0404 (9)0.0424 (10)0.0366 (8)0.0027 (7)0.0035 (7)0.0020 (7)
C20.0453 (11)0.0799 (16)0.0501 (11)0.0037 (11)0.0114 (9)0.0067 (11)
C30.0310 (10)0.097 (2)0.0817 (16)0.0137 (11)0.0080 (10)0.0102 (15)
C40.0270 (8)0.0691 (14)0.0786 (14)0.0112 (9)0.0137 (9)0.0001 (11)
C50.0259 (7)0.0329 (8)0.0474 (9)0.0013 (6)0.0118 (6)0.0005 (7)
C60.0327 (8)0.0387 (9)0.0430 (8)0.0013 (7)0.0210 (7)0.0030 (7)
C70.0367 (8)0.0245 (7)0.0313 (7)0.0042 (6)0.0120 (6)0.0028 (6)
C80.0348 (7)0.0268 (7)0.0241 (6)0.0009 (6)0.0048 (5)0.0029 (5)
Geometric parameters (Å, º) top
Zn1—N22.1336 (12)C1—H10.9300
Zn1—N2i2.1336 (12)C2—C31.376 (4)
Zn1—O12.1465 (11)C2—H20.9300
Zn1—O1i2.1465 (11)C3—C41.386 (3)
Zn1—N1i2.2130 (13)C3—H30.9300
Zn1—N12.2130 (13)C4—C51.388 (2)
S1—O31.4431 (13)C4—H40.9300
S1—O21.4549 (12)C5—C61.508 (2)
S1—O11.4727 (11)C6—H6A0.9700
S1—C81.7825 (15)C6—H6B0.9700
N1—C51.342 (2)C7—C81.518 (2)
N1—C11.349 (2)C7—H7A0.9700
N2—C61.4841 (19)C7—H7B0.9700
N2—C71.4908 (19)C8—H8A0.9700
N2—H1N0.856 (17)C8—H8B0.9700
C1—C21.380 (3)
N2—Zn1—N2i180.0N1—C1—H1119.0
N2—Zn1—O192.40 (5)C2—C1—H1119.0
N2i—Zn1—O187.60 (4)C3—C2—C1118.96 (19)
N2—Zn1—O1i87.60 (5)C3—C2—H2120.5
N2i—Zn1—O1i92.40 (5)C1—C2—H2120.5
O1—Zn1—O1i180.0C2—C3—C4119.55 (18)
N2—Zn1—N1i101.93 (5)C2—C3—H3120.2
N2i—Zn1—N1i78.06 (5)C4—C3—H3120.2
O1—Zn1—N1i89.78 (5)C3—C4—C5118.7 (2)
O1i—Zn1—N1i90.22 (5)C3—C4—H4120.7
N2—Zn1—N178.06 (5)C5—C4—H4120.7
N2i—Zn1—N1101.94 (5)N1—C5—C4121.82 (16)
O1—Zn1—N190.22 (5)N1—C5—C6115.98 (13)
O1i—Zn1—N189.78 (5)C4—C5—C6122.19 (16)
N1i—Zn1—N1180.0N2—C6—C5109.85 (12)
O3—S1—O2113.74 (9)N2—C6—H6A109.7
O3—S1—O1112.90 (8)C5—C6—H6A109.7
O2—S1—O1110.27 (7)N2—C6—H6B109.7
O3—S1—C8107.06 (8)C5—C6—H6B109.7
O2—S1—C8105.93 (7)H6A—C6—H6B108.2
O1—S1—C8106.36 (7)N2—C7—C8111.86 (12)
S1—O1—Zn1129.76 (6)N2—C7—H7A109.2
C5—N1—C1118.96 (14)C8—C7—H7A109.2
C5—N1—Zn1111.53 (10)N2—C7—H7B109.2
C1—N1—Zn1129.14 (12)C8—C7—H7B109.2
C6—N2—C7110.03 (12)H7A—C7—H7B107.9
C6—N2—Zn1105.77 (9)C7—C8—S1112.98 (10)
C7—N2—Zn1116.88 (9)C7—C8—H8A109.0
C6—N2—H1N104.9 (12)S1—C8—H8A109.0
C7—N2—H1N108.2 (12)C7—C8—H8B109.0
Zn1—N2—H1N110.4 (11)S1—C8—H8B109.0
N1—C1—C2122.03 (19)H8A—C8—H8B107.8
O3—S1—O1—Zn1103.94 (10)N1—Zn1—N2—C790.09 (10)
O2—S1—O1—Zn1127.61 (9)C5—N1—C1—C21.1 (3)
C8—S1—O1—Zn113.19 (11)Zn1—N1—C1—C2171.19 (16)
N2—Zn1—O1—S133.74 (10)N1—C1—C2—C30.2 (3)
N2i—Zn1—O1—S1146.26 (10)C1—C2—C3—C40.7 (4)
N1i—Zn1—O1—S168.19 (10)C2—C3—C4—C50.7 (4)
N1—Zn1—O1—S1111.81 (10)C1—N1—C5—C41.1 (3)
N2—Zn1—N1—C514.41 (11)Zn1—N1—C5—C4172.45 (15)
N2i—Zn1—N1—C5165.59 (11)C1—N1—C5—C6178.25 (15)
O1—Zn1—N1—C5106.82 (11)Zn1—N1—C5—C68.16 (17)
O1i—Zn1—N1—C573.18 (11)C3—C4—C5—N10.3 (3)
N2—Zn1—N1—C1158.35 (15)C3—C4—C5—C6179.1 (2)
N2i—Zn1—N1—C121.65 (15)C7—N2—C6—C580.21 (15)
O1—Zn1—N1—C165.94 (14)Zn1—N2—C6—C546.87 (14)
O1i—Zn1—N1—C1114.06 (14)N1—C5—C6—N237.7 (2)
O1—Zn1—N2—C6122.46 (10)C4—C5—C6—N2142.93 (17)
O1i—Zn1—N2—C657.54 (10)C6—N2—C7—C8171.67 (11)
N1i—Zn1—N2—C6147.26 (9)Zn1—N2—C7—C851.08 (14)
N1—Zn1—N2—C632.74 (9)N2—C7—C8—S185.42 (13)
O1—Zn1—N2—C70.37 (10)O3—S1—C8—C7168.32 (11)
O1i—Zn1—N2—C7179.63 (10)O2—S1—C8—C769.97 (12)
N1i—Zn1—N2—C789.91 (10)O1—S1—C8—C747.37 (12)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2ii0.855 (18)2.079 (18)2.9259 (17)170.6 (16)
C1—H1···O2iii0.932.473.388 (2)169
C4—H4···O3iv0.932.493.324 (2)150
C6—H6B···O1i0.972.563.056 (2)112
C8—H8B···O2v0.972.563.265 (2)130
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H11N2O3S)2]
Mr495.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.6288 (13), 10.0047 (13), 11.3624 (15)
β (°) 105.965 (1)
V3)1052.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.50 × 0.39 × 0.29
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.540, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
6318, 2419, 2221
Rint0.012
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.07
No. of reflections2419
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N22.1336 (12)Zn1—N12.2130 (13)
Zn1—O12.1465 (11)
N2—Zn1—O192.40 (5)O1—Zn1—N1i89.78 (5)
N2i—Zn1—O187.60 (4)N2—Zn1—N178.06 (5)
N2—Zn1—N1i101.93 (5)O1—Zn1—N190.22 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2ii0.855 (18)2.079 (18)2.9259 (17)170.6 (16)
C1—H1···O2iii0.93002.47003.388 (2)169.00
C4—H4···O3iv0.93002.49003.324 (2)150.00
C6—H6B···O1i0.97002.56003.056 (2)112.00
C8—H8B···O2v0.97002.56003.265 (2)130.00
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 20771054).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008). J. Chem. Crystallogr. 38, 711–715.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds