organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[o-Phenylenebis(methylene­thio)]bis­(pyridine N-oxide)

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 27 May 2009; accepted 1 June 2009; online 6 June 2009)

In the title compound, C18H16N2O2S2, the benzene ring makes dihedral angles of 7.41 and 86.59° with the two outer pyridine N-oxygen rings. Two short intramolecular C—H⋯S contacts occur. The crystal packing is stabilized by C—H⋯O hydrogen bonds, C—H⋯π inter­actions and weak ππ staking inter­actions [centroid–centroid distance 3.7596 (7) Å].

Related literature

For a related stucture, see: Han et al. (2005[Han, L., Wu, B. L., Xu, Y. Q., Wu, M. Y., Gong, Y. Q., Lou, B. Y., Chen, B. Q. & Hong, M. C. (2005). Inorg. Chim. Acta, 358, 2005-2013.]). For thio­ether compounds, see: Xie et al. (2005[Xie, Y. B., Li, J. R. & Bu, X. H. (2005). Polyhedron, 24, 413-418.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2S2

  • Mr = 356.47

  • Monoclinic, P 21 /n

  • a = 7.5075 (15) Å

  • b = 17.810 (4) Å

  • c = 12.480 (3) Å

  • β = 105.20 (3)°

  • V = 1610.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.34 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9681 measured reflections

  • 3782 independent reflections

  • 3145 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.02

  • 3782 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.42 3.133 (2) 134
C5—H5A⋯O1ii 0.93 2.38 3.253 (2) 155
C8—H8A⋯S1 0.93 2.67 3.1105 (18) 110
C11—H11A⋯S2 0.93 2.47 2.9322 (18) 111
C15—H15A⋯O2iii 0.93 2.58 3.461 (2) 158
C9—H9ACg2iv 0.93 2.90 3.645 (2) 138
Symmetry codes: (i) -x-1, -y, -z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z+1. Cg2 is the centroid of the N2/C1–C5 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioether-type ligands are attracting great attention as the conformational freedom, flexible multidentate bridging ligands (Xie et al., 2005). In continuation of the structural study of thioether-type ligands (Han et al., 2005), herein, we report the crystal sructure of the title compound.

The title compound (Fig. 1) was obtained by the reaction of 2-mercaptopyridine N-oxide and o-xylylene dibromide. In the asymmetric unit, the central benzene ring makes dihedral angles of 7.44 and 86.52° with the two outer pyridine N-oxygen rings and the crystal packing is stabilized by C—H···O and C—H..S hydrogen bonding, C—H···π interactions (Table 1) and weak π-π staking interactions [centroid-to-centroid distance 3.7596 (7) Å].

Related literature top

For a related stucture, see: Han et al. (2005). For thioether compounds, see: Xie et al. (2005). Cg2 is the centroid of the N2/C1–C5 ring.

Experimental top

2-Mercaptopyridine N-oxide (1.2719 g, 10.00 mmol) was added to a stirred solution of KOH (0.6091 g, 10.85 mmol) in ethanol (50 ml). After 30 min, o-xylylene dibromide (1.3206 g, 5.00 mmol) was added and the mixture was heated to 343 K for 6 h with vigorous stirring. The mixture was cooled to room temperature and the precipitate was filtered off and washed with ethanol and water, giving a white powder in 66.0% yield. Then, a solution of the powder in CHCl3/CH3CN with a molar ratio of 1:1 was filtered. Slow diffusion of ether into the filtrate yielded colourless prism crystals.

Refinement top

The H atoms H6A and H6B of the C6 atom were found from a difference Fourier map and refined freely. The rest H atoms were fixed geometrically with C—H = 0.93-0.97 Å and treated as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms.
2,2'-[o-Phenylenebis(methylenethio)]bis(pyridine N-oxide) top
Crystal data top
C18H16N2O2S2F(000) = 744
Mr = 356.47Dx = 1.470 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9866 reflections
a = 7.5075 (15) Åθ = 2.0–27.9°
b = 17.810 (4) ŵ = 0.34 mm1
c = 12.480 (3) ÅT = 293 K
β = 105.20 (3)°Prism, colourless
V = 1610.3 (7) Å30.34 × 0.28 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3145 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.9°, θmin = 2.0°
ω scansh = 89
9681 measured reflectionsk = 1723
3782 independent reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.5053P]
where P = (Fo2 + 2Fc2)/3
3782 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H16N2O2S2V = 1610.3 (7) Å3
Mr = 356.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5075 (15) ŵ = 0.34 mm1
b = 17.810 (4) ÅT = 293 K
c = 12.480 (3) Å0.34 × 0.28 × 0.16 mm
β = 105.20 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3145 reflections with I > 2σ(I)
9681 measured reflectionsRint = 0.017
3782 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
3782 reflectionsΔρmin = 0.20 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17377 (5)0.17901 (2)0.34399 (3)0.03675 (11)
S20.30419 (5)0.03050 (2)0.04963 (3)0.03289 (10)
C70.00609 (19)0.04497 (8)0.25080 (11)0.0304 (3)
N10.47078 (17)0.01887 (7)0.25627 (10)0.0350 (3)
O10.48428 (16)0.09127 (6)0.24087 (9)0.0458 (3)
C140.38096 (18)0.02425 (8)0.16810 (11)0.0308 (3)
C60.0423 (2)0.12465 (8)0.22786 (12)0.0335 (3)
C10.0008 (2)0.20710 (8)0.40531 (11)0.0324 (3)
C120.11785 (18)0.00251 (8)0.16387 (11)0.0301 (3)
C150.3632 (2)0.10057 (9)0.18273 (13)0.0397 (3)
H15A0.30090.13040.12350.048*
N20.06622 (19)0.25129 (7)0.49662 (10)0.0402 (3)
C20.1847 (2)0.18976 (9)0.37257 (13)0.0388 (3)
H2A0.22990.15920.31110.047*
C110.1519 (2)0.07213 (9)0.18381 (13)0.0421 (4)
H11A0.22600.10070.12700.051*
C130.19734 (19)0.03928 (8)0.05228 (11)0.0318 (3)
H13A0.09990.06460.02850.038*
H13B0.28830.07650.05870.038*
O20.24350 (18)0.26652 (7)0.52668 (10)0.0570 (3)
C80.0643 (2)0.01115 (9)0.35310 (12)0.0402 (3)
H8A0.13670.03920.41120.048*
C90.0293 (3)0.06342 (10)0.37091 (14)0.0500 (4)
H9A0.07870.08520.44010.060*
C180.5444 (2)0.01241 (10)0.35676 (13)0.0456 (4)
H18A0.60600.01780.41570.055*
C50.0505 (3)0.27874 (9)0.55340 (14)0.0536 (5)
H5A0.00480.30910.61510.064*
C30.3033 (3)0.21749 (10)0.43040 (16)0.0511 (4)
H3A0.42840.20600.40840.061*
C170.5296 (3)0.08746 (11)0.37289 (14)0.0527 (4)
H17A0.58070.10850.44240.063*
C160.4379 (3)0.13227 (10)0.28521 (14)0.0507 (4)
H16A0.42690.18360.29550.061*
C100.0783 (3)0.10491 (10)0.28622 (14)0.0512 (4)
H10A0.10190.15520.29750.061*
C40.2338 (3)0.26248 (10)0.52122 (17)0.0584 (5)
H4A0.31250.28190.56080.070*
H6A0.125 (2)0.1237 (9)0.1798 (14)0.042 (4)*
H6B0.062 (2)0.1528 (10)0.1903 (14)0.043 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03174 (19)0.0384 (2)0.0364 (2)0.00423 (14)0.00247 (14)0.00293 (15)
S20.03698 (19)0.03129 (19)0.02808 (18)0.00011 (14)0.00442 (14)0.00330 (13)
C70.0319 (7)0.0324 (7)0.0271 (7)0.0032 (5)0.0081 (5)0.0001 (5)
N10.0348 (6)0.0363 (7)0.0308 (6)0.0028 (5)0.0034 (5)0.0047 (5)
O10.0547 (7)0.0324 (6)0.0443 (6)0.0074 (5)0.0022 (5)0.0070 (5)
C140.0285 (7)0.0351 (7)0.0271 (7)0.0009 (5)0.0044 (5)0.0038 (5)
C60.0403 (8)0.0321 (7)0.0267 (7)0.0001 (6)0.0064 (6)0.0010 (5)
C10.0395 (8)0.0268 (7)0.0277 (7)0.0026 (6)0.0033 (6)0.0006 (5)
C120.0308 (7)0.0320 (7)0.0276 (7)0.0021 (5)0.0078 (5)0.0003 (5)
C150.0450 (9)0.0357 (8)0.0354 (8)0.0046 (6)0.0054 (6)0.0039 (6)
N20.0555 (8)0.0280 (6)0.0312 (6)0.0053 (6)0.0009 (6)0.0017 (5)
C20.0385 (8)0.0371 (8)0.0390 (8)0.0029 (6)0.0069 (6)0.0036 (6)
C110.0507 (9)0.0357 (8)0.0365 (8)0.0049 (7)0.0053 (7)0.0004 (6)
C130.0333 (7)0.0323 (7)0.0271 (7)0.0009 (5)0.0031 (5)0.0019 (5)
O20.0580 (8)0.0494 (7)0.0497 (7)0.0150 (6)0.0107 (6)0.0095 (6)
C80.0462 (9)0.0415 (8)0.0283 (7)0.0008 (7)0.0015 (6)0.0019 (6)
C90.0655 (11)0.0444 (9)0.0351 (9)0.0038 (8)0.0046 (8)0.0130 (7)
C180.0472 (9)0.0530 (10)0.0289 (8)0.0032 (8)0.0037 (6)0.0035 (7)
C50.0920 (15)0.0324 (8)0.0374 (9)0.0016 (9)0.0186 (9)0.0065 (7)
C30.0484 (10)0.0446 (9)0.0644 (12)0.0024 (8)0.0223 (9)0.0019 (8)
C170.0617 (11)0.0541 (11)0.0348 (9)0.0003 (9)0.0004 (7)0.0086 (7)
C160.0653 (11)0.0380 (9)0.0447 (10)0.0039 (8)0.0071 (8)0.0055 (7)
C100.0695 (12)0.0348 (8)0.0467 (10)0.0019 (8)0.0104 (8)0.0093 (7)
C40.0828 (14)0.0410 (10)0.0630 (12)0.0088 (9)0.0398 (11)0.0010 (8)
Geometric parameters (Å, º) top
S1—C11.7442 (15)C2—C31.376 (2)
S1—C61.8061 (15)C2—H2A0.9300
S2—C141.7384 (15)C11—C101.382 (2)
S2—C131.8084 (14)C11—H11A0.9300
C7—C81.385 (2)C13—H13A0.9700
C7—C121.4055 (19)C13—H13B0.9700
C7—C61.511 (2)C8—C91.383 (2)
N1—O11.3116 (16)C8—H8A0.9300
N1—C181.351 (2)C9—C101.367 (2)
N1—C141.3660 (17)C9—H9A0.9300
C14—C151.383 (2)C18—C171.361 (3)
C6—H6A0.971 (17)C18—H18A0.9300
C6—H6B0.942 (18)C5—C41.360 (3)
C1—N21.3658 (18)C5—H5A0.9300
C1—C21.380 (2)C3—C41.374 (3)
C12—C111.389 (2)C3—H3A0.9300
C12—C131.5128 (19)C17—C161.383 (2)
C15—C161.376 (2)C17—H17A0.9300
C15—H15A0.9300C16—H16A0.9300
N2—O21.3130 (18)C10—H10A0.9300
N2—C51.355 (2)C4—H4A0.9300
C1—S1—C6101.12 (7)C12—C11—H11A119.3
C14—S2—C13101.52 (7)C12—C13—S2110.19 (10)
C8—C7—C12118.93 (13)C12—C13—H13A109.6
C8—C7—C6122.05 (13)S2—C13—H13A109.6
C12—C7—C6118.93 (12)C12—C13—H13B109.6
O1—N1—C18120.85 (12)S2—C13—H13B109.6
O1—N1—C14118.39 (12)H13A—C13—H13B108.1
C18—N1—C14120.76 (13)C9—C8—C7121.54 (14)
N1—C14—C15119.39 (13)C9—C8—H8A119.2
N1—C14—S2110.69 (10)C7—C8—H8A119.2
C15—C14—S2129.92 (11)C10—C9—C8119.57 (15)
C7—C6—S1117.35 (10)C10—C9—H9A120.2
C7—C6—H6A109.0 (10)C8—C9—H9A120.2
S1—C6—H6A101.6 (10)N1—C18—C17120.86 (15)
C7—C6—H6B112.7 (10)N1—C18—H18A119.6
S1—C6—H6B108.7 (10)C17—C18—H18A119.6
H6A—C6—H6B106.4 (14)N2—C5—C4120.81 (16)
N2—C1—C2119.34 (14)N2—C5—H5A119.6
N2—C1—S1112.67 (11)C4—C5—H5A119.6
C2—C1—S1127.99 (12)C4—C3—C2118.96 (17)
C11—C12—C7118.52 (13)C4—C3—H3A120.5
C11—C12—C13122.19 (13)C2—C3—H3A120.5
C7—C12—C13119.29 (12)C18—C17—C16119.52 (16)
C16—C15—C14119.74 (14)C18—C17—H17A120.2
C16—C15—H15A120.1C16—C17—H17A120.2
C14—C15—H15A120.1C15—C16—C17119.72 (16)
O2—N2—C5121.49 (14)C15—C16—H16A120.1
O2—N2—C1118.23 (13)C17—C16—H16A120.1
C5—N2—C1120.27 (14)C9—C10—C11119.92 (15)
C3—C2—C1120.38 (15)C9—C10—H10A120.0
C3—C2—H2A119.8C11—C10—H10A120.0
C1—C2—H2A119.8C5—C4—C3120.23 (17)
C10—C11—C12121.50 (15)C5—C4—H4A119.9
C10—C11—H11A119.3C3—C4—H4A119.9
O1—N1—C14—C15179.24 (13)S1—C1—C2—C3179.40 (13)
C18—N1—C14—C151.0 (2)C7—C12—C11—C100.2 (2)
O1—N1—C14—S20.70 (16)C13—C12—C11—C10180.00 (15)
C18—N1—C14—S2179.09 (12)C11—C12—C13—S29.11 (17)
C13—S2—C14—N1178.90 (10)C7—C12—C13—S2171.08 (10)
C13—S2—C14—C151.17 (16)C14—S2—C13—C12179.41 (9)
C8—C7—C6—S17.41 (19)C12—C7—C8—C91.0 (2)
C12—C7—C6—S1176.13 (10)C6—C7—C8—C9175.47 (15)
C1—S1—C6—C780.37 (12)C7—C8—C9—C100.5 (3)
C6—S1—C1—N2178.97 (10)O1—N1—C18—C17179.67 (16)
C6—S1—C1—C21.27 (15)C14—N1—C18—C170.5 (2)
C8—C7—C12—C110.6 (2)O2—N2—C5—C4179.98 (16)
C6—C7—C12—C11175.95 (13)C1—N2—C5—C40.5 (2)
C8—C7—C12—C13179.20 (13)C1—C2—C3—C40.1 (3)
C6—C7—C12—C134.23 (19)N1—C18—C17—C160.0 (3)
N1—C14—C15—C160.8 (2)C14—C15—C16—C170.3 (3)
S2—C14—C15—C16179.24 (13)C18—C17—C16—C150.1 (3)
C2—C1—N2—O2179.46 (13)C8—C9—C10—C110.3 (3)
S1—C1—N2—O20.33 (17)C12—C11—C10—C90.7 (3)
C2—C1—N2—C51.0 (2)N2—C5—C4—C30.2 (3)
S1—C1—N2—C5179.20 (12)C2—C3—C4—C50.4 (3)
N2—C1—C2—C30.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.423.133 (2)134
C5—H5A···O1ii0.932.383.253 (2)155
C8—H8A···S10.932.673.1105 (18)110
C11—H11A···S20.932.472.9322 (18)111
C15—H15A···O2iii0.932.583.461 (2)158
C9—H9A···Cg2iv0.932.903.645 (2)138
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N2O2S2
Mr356.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.5075 (15), 17.810 (4), 12.480 (3)
β (°) 105.20 (3)
V3)1610.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.34 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9681, 3782, 3145
Rint0.017
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.02
No. of reflections3782
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.93002.42003.133 (2)134.00
C5—H5A···O1ii0.93002.38003.253 (2)155.00
C8—H8A···S10.93002.67003.1105 (18)110.00
C11—H11A···S20.93002.47002.9322 (18)111.00
C15—H15A···O2iii0.93002.58003.461 (2)158.00
C9—H9A···Cg2iv0.932.903.645 (2)138
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y, z+1.
 

Acknowledgements

This work was supported Beijing Municipal Natural Science Foundation (grant No. 2082004).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, L., Wu, B. L., Xu, Y. Q., Wu, M. Y., Gong, Y. Q., Lou, B. Y., Chen, B. Q. & Hong, M. C. (2005). Inorg. Chim. Acta, 358, 2005–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y. B., Li, J. R. & Bu, X. H. (2005). Polyhedron, 24, 413–418.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds