metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(ciprofloxacinato)manganese(II) 2,2′-bi­pyridine solvate tetrahydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 27 May 2009; accepted 9 June 2009; online 17 June 2009)

In the crystal structure of the title compound {systematic name: diaquabis­[1-cyclo­propyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato]manganese(II) 2,2′-bi­pyridine solvate tetrahydrate}, [Mn(C17H17FN3O3)2(H2O)2]·C10H8N2·4H2O, the pyridone O and one carboxyl­ate O atom of the two ciprofloxacin ligands are bound to the MnII ion and occupy the equatorial positions, while the two aqua O atoms lie in the apical positions resulting in a distorted octa­hedral geometry. The crystal packing is stabilized by N–H⋯O and O–H⋯O hydrogen bonding interactions.

Related literature

Manganese is a cofactor or required metal ion for many enzymes, such as superoxide dismutase, glutamine synthetase and arginase, see: Dukhande et al. (2006[Dukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res. 31, 1349-1357.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C17H17FN3O3)2(H2O)2]·C10H8N2·4H2O

  • Mr = 979.89

  • Triclinic, [P \overline 1]

  • a = 10.0355 (3) Å

  • b = 11.1409 (3) Å

  • c = 11.8461 (3) Å

  • α = 66.905 (2)°

  • β = 68.933 (2)°

  • γ = 85.858 (2)°

  • V = 1133.22 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.42 × 0.17 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.983

  • 14989 measured reflections

  • 5061 independent reflections

  • 3310 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.274

  • S = 1.08

  • 5061 reflections

  • 313 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O3i 0.86 2.22 2.661 (5) 112
O1W—H1WA⋯N4ii 0.86 (2) 2.03 (2) 2.880 (6) 171 (7)
O3W—H3WB⋯O2Wii 0.85 2.13 2.910 (4) 153
O1W—H1WB⋯O3W 0.86 (2) 2.15 (2) 3.009 (5) 170 (6)
O2W—H2WA⋯N3 0.765 (18) 2.53 (3) 3.125 (5) 136 (4)
Symmetry codes: (i) x+1, y+1, z-1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid hydrochloride (ciprofloxacin hydrochloride), is the third generation quinolone antibacterial drug with broad-spectrum antibacterial activity, especially aerobic gram-negative bacilli high antibacterial activity. It can interfere the synthesis of DNA, destroy the fission of cells in order to sterilize by inhibiting DNA gyrase. Manganese is an important trace element needed for normal physiological functions and development. It is also a cofactor or required metal ion for many enzymes, such as superoxide dismutase, glutamine synthetase and arginase (Dukhande et al., 2006). Synthesis, characterization and biological activity studies of the manganese complexes have become one of the most attractive research fields in modern bioinorganic chemistry.

In the title compound, the Mn(II) ion is coordinated with four oxygen atoms of the ciprofloxacin ligands in the equatorial positions while two oxygen atoms of the water occupy the axial positions resulting in a typical Jahn-Teller distorted octahedral geometry around the central metal atom. The Mn—O bond distances arising from the two carbonyl oxygen atoms O1 are longer,[2.153 (3) Å], than those arising from the carboxylate oxygen atoms O2, [2.122 (4) Å]. The axial average linkages between manganese and oxygen atoms of water are substantially longer [2.229 (4) Å] than the equatorial bond distances. The bond angles O1—Mn1—O1A, O2—Mn1—O2A and O1W—Mn1—O1W are 180° while the bond angles O2A—Mn1—O1W and O2—Mn1—O1W open up slightly from 89.17 (16)° to 90.83 (16)°, resulting in a slight distortion from the idealized octahedral geometry.

Related literature top

Manganese is a cofactor or required metal ion for many enzymes, such as superoxide dismutase, glutamine synthetase and arginase, see: Dukhande et al. (2006).

Experimental top

A mixture of 0.1 mmol ciprofloxacin hydrochloride, 0.1 mmol MnCl2.4H2O, 0.1 mmol 2,2'-bipyridine and 10 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 433 K for 3 d, then cooled slowly to room temperature. The solution was filtered and after two weeks yellow single crystals were obtained.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 Å, methine C—H = 0.98 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C),]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
diaquabis[1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4- dihydroquinoline-3-carboxylato]manganese(II) 2,2'-bipyridine solvate tetrahydrate} top
Crystal data top
[Mn(C17H17FN3O3)2(H2O)2]·C10H8N2·4H2OZ = 1
Mr = 979.89F(000) = 513
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0355 (3) ÅCell parameters from 2729 reflections
b = 11.1409 (3) Åθ = 2.0–27.6°
c = 11.8461 (3) ŵ = 0.37 mm1
α = 66.905 (2)°T = 296 K
β = 68.933 (2)°Sheet, yellow
γ = 85.858 (2)°0.42 × 0.17 × 0.05 mm
V = 1133.22 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5061 independent reflections
Radiation source: fine-focus sealed tube3310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.926, Tmax = 0.983k = 1414
14989 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.274H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1334P)2 + 2.3765P]
where P = (Fo2 + 2Fc2)/3
5061 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 1.07 e Å3
6 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Mn(C17H17FN3O3)2(H2O)2]·C10H8N2·4H2Oγ = 85.858 (2)°
Mr = 979.89V = 1133.22 (6) Å3
Triclinic, P1Z = 1
a = 10.0355 (3) ÅMo Kα radiation
b = 11.1409 (3) ŵ = 0.37 mm1
c = 11.8461 (3) ÅT = 296 K
α = 66.905 (2)°0.42 × 0.17 × 0.05 mm
β = 68.933 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5061 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3310 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.983Rint = 0.042
14989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0846 restraints
wR(F2) = 0.274H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.07 e Å3
5061 reflectionsΔρmin = 0.65 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.50000.0346 (3)
F10.4111 (3)0.0038 (3)0.0828 (3)0.0517 (9)
N10.1402 (4)0.0159 (4)0.2298 (4)0.0313 (9)
N20.3086 (4)0.2389 (4)0.1295 (4)0.0355 (9)
N30.4635 (4)0.4907 (4)0.2699 (4)0.0406 (10)
H3B0.49050.56570.27710.049*
N40.1028 (5)0.1554 (4)0.3907 (5)0.0447 (11)
O10.0631 (4)0.3212 (3)0.3262 (3)0.0409 (9)
O1W0.0267 (5)0.6032 (4)0.3810 (4)0.0494 (10)
H1WA0.004 (7)0.678 (3)0.384 (6)0.074*
H1WB0.004 (8)0.564 (5)0.297 (2)0.074*
O20.2083 (4)0.4338 (3)0.5255 (4)0.0457 (9)
O2W0.3929 (3)0.5957 (3)0.0476 (3)0.0237 (6)
H2WB0.44510.59470.00450.028*
H2WA0.445 (4)0.601 (5)0.115 (2)0.036*
O30.3858 (4)0.3070 (3)0.5148 (4)0.0490 (10)
O3W0.0870 (3)0.4804 (3)0.0850 (3)0.0279 (7)
H3WA0.06540.49150.02650.034*
H3WB0.17560.47360.07230.034*
C10.2563 (5)0.3264 (4)0.4764 (5)0.0339 (11)
C20.1559 (5)0.2151 (4)0.3635 (5)0.0313 (10)
C30.2132 (5)0.0963 (4)0.3248 (5)0.0328 (10)
H3A0.31040.09350.36820.039*
C40.2122 (5)0.1368 (4)0.2043 (5)0.0344 (11)
H4A0.23360.16990.12340.041*
C50.3182 (6)0.1616 (5)0.3180 (5)0.0434 (13)
H5A0.40150.20670.30570.052*
H5B0.33490.09590.40580.052*
C60.1751 (6)0.2373 (5)0.2431 (5)0.0423 (12)
H6A0.17180.32850.18590.051*
H6B0.10530.21780.28590.051*
C70.0015 (5)0.0152 (4)0.1534 (4)0.0294 (10)
C80.0804 (5)0.1295 (4)0.0504 (5)0.0313 (10)
H8A0.03720.20810.03330.038*
C90.2217 (5)0.1273 (4)0.0263 (4)0.0307 (10)
C100.2348 (5)0.3576 (4)0.1651 (5)0.0358 (11)
H10A0.20450.38840.09430.043*
H10B0.15030.33940.17920.043*
C110.3359 (6)0.4625 (5)0.2906 (5)0.0388 (12)
H11A0.36390.43240.36180.047*
H11B0.28720.54170.31510.047*
C120.5392 (6)0.3696 (5)0.2344 (6)0.0509 (15)
H12A0.62380.38770.22040.061*
H12B0.56930.33910.30540.061*
C130.4387 (6)0.2654 (5)0.1099 (6)0.0473 (14)
H13A0.48680.18570.08640.057*
H13B0.41240.29470.03820.057*
C140.2779 (5)0.0040 (5)0.0004 (5)0.0352 (11)
C150.2065 (5)0.1080 (4)0.1001 (5)0.0333 (10)
H15A0.24990.18660.11400.040*
C160.0660 (5)0.1043 (4)0.1832 (4)0.0279 (9)
C170.0088 (5)0.2225 (4)0.2956 (4)0.0295 (10)
C180.2345 (7)0.2003 (6)0.3002 (6)0.0550 (15)
H18A0.25670.29040.26040.066*
C190.3394 (7)0.1219 (7)0.2622 (6)0.0551 (15)
H19A0.42890.15770.19830.066*
C200.3059 (7)0.0116 (6)0.3230 (6)0.0551 (15)
H20A0.37390.06800.30120.066*
C210.1722 (6)0.0612 (6)0.4157 (6)0.0476 (13)
H21A0.14830.15100.45530.057*
C220.0728 (5)0.0237 (5)0.4498 (5)0.0366 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0330 (6)0.0237 (5)0.0326 (6)0.0009 (4)0.0045 (4)0.0028 (4)
F10.0347 (16)0.0388 (17)0.0486 (19)0.0009 (13)0.0122 (14)0.0083 (14)
N10.030 (2)0.0248 (19)0.028 (2)0.0007 (15)0.0033 (16)0.0060 (16)
N20.032 (2)0.027 (2)0.032 (2)0.0046 (16)0.0048 (17)0.0012 (16)
N30.037 (2)0.028 (2)0.037 (2)0.0093 (17)0.0032 (19)0.0006 (18)
N40.043 (3)0.041 (2)0.041 (3)0.002 (2)0.006 (2)0.014 (2)
O10.0350 (19)0.0264 (17)0.038 (2)0.0038 (14)0.0008 (15)0.0011 (14)
O1W0.067 (3)0.037 (2)0.040 (2)0.0014 (19)0.015 (2)0.0137 (17)
O20.0339 (19)0.0291 (18)0.046 (2)0.0016 (14)0.0031 (16)0.0034 (15)
O2W0.0189 (15)0.0200 (14)0.0395 (18)0.0028 (11)0.0226 (13)0.0083 (13)
O30.0268 (19)0.0349 (19)0.053 (2)0.0019 (14)0.0021 (16)0.0004 (17)
O3W0.0267 (16)0.0398 (17)0.0179 (15)0.0073 (13)0.0140 (12)0.0074 (13)
C10.033 (3)0.028 (2)0.028 (2)0.0028 (19)0.002 (2)0.0058 (19)
C20.032 (2)0.028 (2)0.027 (2)0.0037 (18)0.0071 (19)0.0057 (18)
C30.025 (2)0.029 (2)0.030 (2)0.0051 (18)0.0009 (19)0.0032 (19)
C40.032 (3)0.027 (2)0.033 (3)0.0026 (18)0.007 (2)0.0057 (19)
C50.042 (3)0.037 (3)0.042 (3)0.010 (2)0.008 (2)0.014 (2)
C60.042 (3)0.034 (3)0.047 (3)0.003 (2)0.012 (2)0.016 (2)
C70.025 (2)0.028 (2)0.026 (2)0.0016 (17)0.0043 (18)0.0055 (18)
C80.030 (2)0.024 (2)0.031 (2)0.0031 (18)0.004 (2)0.0072 (19)
C90.032 (2)0.026 (2)0.024 (2)0.0057 (18)0.0034 (19)0.0038 (18)
C100.033 (3)0.027 (2)0.035 (3)0.0016 (19)0.006 (2)0.005 (2)
C110.039 (3)0.029 (2)0.031 (3)0.006 (2)0.003 (2)0.002 (2)
C120.032 (3)0.037 (3)0.057 (4)0.005 (2)0.007 (3)0.002 (3)
C130.034 (3)0.033 (3)0.051 (3)0.010 (2)0.013 (2)0.007 (2)
C140.024 (2)0.035 (3)0.036 (3)0.0007 (19)0.001 (2)0.013 (2)
C150.032 (3)0.026 (2)0.031 (3)0.0012 (18)0.004 (2)0.0072 (19)
C160.027 (2)0.023 (2)0.026 (2)0.0028 (17)0.0045 (18)0.0044 (17)
C170.036 (3)0.021 (2)0.023 (2)0.0039 (18)0.0069 (19)0.0032 (17)
C180.051 (4)0.046 (3)0.050 (4)0.009 (3)0.006 (3)0.009 (3)
C190.040 (3)0.069 (4)0.044 (3)0.003 (3)0.001 (3)0.021 (3)
C200.045 (3)0.060 (4)0.045 (3)0.003 (3)0.000 (3)0.021 (3)
C210.049 (3)0.044 (3)0.043 (3)0.003 (2)0.009 (3)0.017 (3)
C220.036 (3)0.042 (3)0.028 (3)0.004 (2)0.008 (2)0.013 (2)
Geometric parameters (Å, º) top
Mn1—O2i2.122 (4)C5—C61.495 (8)
Mn1—O22.122 (4)C5—H5A0.9700
Mn1—O1i2.153 (3)C5—H5B0.9700
Mn1—O12.153 (3)C6—H6A0.9700
Mn1—O1Wi2.229 (4)C6—H6B0.9700
Mn1—O1W2.229 (4)C7—C81.403 (6)
F1—C141.363 (5)C7—C161.410 (6)
N1—C31.342 (6)C8—C91.386 (6)
N1—C71.386 (6)C8—H8A0.9300
N1—C41.458 (6)C9—C141.408 (7)
N2—C91.413 (5)C10—C111.526 (6)
N2—C101.456 (6)C10—H10A0.9700
N2—C131.476 (7)C10—H10B0.9700
N3—C111.463 (7)C11—H11A0.9700
N3—C121.487 (7)C11—H11B0.9700
N3—H3B0.8600C12—C131.516 (7)
N4—C181.343 (7)C12—H12A0.9700
N4—C221.356 (7)C12—H12B0.9700
O1—C171.273 (5)C13—H13A0.9700
O1W—H1WA0.86 (2)C13—H13B0.9700
O1W—H1WB0.86 (2)C14—C151.356 (6)
O2—C11.255 (6)C15—C161.409 (6)
O2W—H2WB0.8500C15—H15A0.9300
O2W—H2WA0.765 (18)C16—C171.456 (6)
O3—C11.246 (6)C18—C191.381 (9)
O3W—H3WA0.8501C18—H18A0.9300
O3W—H3WB0.8501C19—C201.379 (9)
C1—C21.501 (6)C19—H19A0.9300
C2—C31.377 (6)C20—C211.372 (8)
C2—C171.420 (7)C20—H20A0.9300
C3—H3A0.9300C21—C221.388 (7)
C4—C61.481 (7)C21—H21A0.9300
C4—C51.497 (7)C22—C22ii1.483 (10)
C4—H4A0.9800
O2i—Mn1—O2180.00 (9)N1—C7—C16117.9 (4)
O2i—Mn1—O1i83.55 (13)C8—C7—C16120.3 (4)
O2—Mn1—O1i96.45 (13)C9—C8—C7121.2 (4)
O2i—Mn1—O196.45 (13)C9—C8—H8A119.4
O2—Mn1—O183.55 (13)C7—C8—H8A119.4
O1i—Mn1—O1180.00 (19)C8—C9—C14116.5 (4)
O2i—Mn1—O1Wi90.83 (16)C8—C9—N2124.3 (4)
O2—Mn1—O1Wi89.17 (16)C14—C9—N2119.2 (4)
O1i—Mn1—O1Wi89.33 (14)N2—C10—C11109.3 (4)
O1—Mn1—O1Wi90.67 (14)N2—C10—H10A109.8
O2i—Mn1—O1W89.17 (16)C11—C10—H10A109.8
O2—Mn1—O1W90.83 (16)N2—C10—H10B109.8
O1i—Mn1—O1W90.67 (14)C11—C10—H10B109.8
O1—Mn1—O1W89.33 (14)H10A—C10—H10B108.3
O1Wi—Mn1—O1W180.0N3—C11—C10110.1 (4)
C3—N1—C7119.8 (4)N3—C11—H11A109.6
C3—N1—C4119.7 (4)C10—C11—H11A109.6
C7—N1—C4120.4 (4)N3—C11—H11B109.6
C9—N2—C10115.5 (4)C10—C11—H11B109.6
C9—N2—C13113.4 (4)H11A—C11—H11B108.2
C10—N2—C13110.5 (4)N3—C12—C13109.0 (4)
C11—N3—C12109.6 (4)N3—C12—H12A109.9
C11—N3—H3B125.2C13—C12—H12A109.9
C12—N3—H3B125.2N3—C12—H12B109.9
C18—N4—C22117.1 (5)C13—C12—H12B109.9
C17—O1—Mn1128.5 (3)H12A—C12—H12B108.3
Mn1—O1W—H1WA125 (4)N2—C13—C12110.3 (5)
Mn1—O1W—H1WB121 (4)N2—C13—H13A109.6
H1WA—O1W—H1WB98 (3)C12—C13—H13A109.6
C1—O2—Mn1134.5 (3)N2—C13—H13B109.6
H2WB—O2W—H2WA105.2C12—C13—H13B109.6
H3WA—O3W—H3WB117.2H13A—C13—H13B108.1
O3—C1—O2123.2 (4)C15—C14—F1117.9 (4)
O3—C1—C2117.1 (4)C15—C14—C9124.0 (4)
O2—C1—C2119.6 (4)F1—C14—C9118.1 (4)
C3—C2—C17118.2 (4)C14—C15—C16119.3 (4)
C3—C2—C1116.2 (4)C14—C15—H15A120.3
C17—C2—C1125.5 (4)C16—C15—H15A120.3
N1—C3—C2125.4 (4)C15—C16—C7118.3 (4)
N1—C3—H3A117.3C15—C16—C17119.8 (4)
C2—C3—H3A117.3C7—C16—C17121.9 (4)
N1—C4—C6118.5 (4)O1—C17—C2125.9 (4)
N1—C4—C5119.1 (4)O1—C17—C16117.9 (4)
C6—C4—C560.3 (4)C2—C17—C16116.1 (4)
N1—C4—H4A115.9N4—C18—C19124.5 (6)
C6—C4—H4A115.9N4—C18—H18A117.7
C5—C4—H4A115.9C19—C18—H18A117.7
C6—C5—C459.3 (3)C20—C19—C18117.3 (6)
C6—C5—H5A117.8C20—C19—H19A121.4
C4—C5—H5A117.8C18—C19—H19A121.4
C6—C5—H5B117.8C21—C20—C19119.9 (6)
C4—C5—H5B117.8C21—C20—H20A120.1
H5A—C5—H5B115.0C19—C20—H20A120.1
C4—C6—C560.4 (3)C20—C21—C22119.6 (5)
C4—C6—H6A117.7C20—C21—H21A120.2
C5—C6—H6A117.7C22—C21—H21A120.2
C4—C6—H6B117.7N4—C22—C21121.6 (5)
C5—C6—H6B117.7N4—C22—C22ii116.2 (6)
H6A—C6—H6B114.9C21—C22—C22ii122.2 (6)
N1—C7—C8121.7 (4)
O2—Mn1—O1—C1714.4 (4)C13—N2—C10—C1158.6 (6)
O1i—Mn1—O1—C1742 (43)C12—N3—C11—C1060.2 (5)
O1Wi—Mn1—O1—C1774.7 (4)N2—C10—C11—N359.6 (5)
O1W—Mn1—O1—C17105.3 (4)C11—N3—C12—C1359.4 (6)
O1i—Mn1—O2—C1165.3 (5)C9—N2—C13—C12169.4 (4)
O1—Mn1—O2—C114.7 (5)C10—N2—C13—C1259.1 (6)
O1Wi—Mn1—O2—C176.1 (5)N3—C12—C13—N258.6 (7)
O1W—Mn1—O2—C1103.9 (5)C8—C9—C14—C155.4 (8)
Mn1—O2—C1—O3173.9 (4)N2—C9—C14—C15176.6 (5)
Mn1—O2—C1—C27.6 (8)C8—C9—C14—F1173.1 (4)
O3—C1—C2—C38.7 (7)N2—C9—C14—F14.8 (7)
O2—C1—C2—C3172.7 (5)F1—C14—C15—C16177.0 (4)
O3—C1—C2—C17171.9 (5)C9—C14—C15—C161.6 (8)
O2—C1—C2—C176.6 (8)C14—C15—C16—C73.9 (7)
C7—N1—C3—C26.1 (8)C14—C15—C16—C17176.7 (5)
C4—N1—C3—C2176.1 (5)N1—C7—C16—C15175.4 (4)
C17—C2—C3—N12.1 (8)C8—C7—C16—C155.5 (7)
C1—C2—C3—N1177.3 (5)N1—C7—C16—C174.0 (7)
C3—N1—C4—C6108.4 (5)C8—C7—C16—C17175.1 (4)
C7—N1—C4—C673.9 (6)Mn1—O1—C17—C28.3 (7)
C3—N1—C4—C538.5 (7)Mn1—O1—C17—C16169.7 (3)
C7—N1—C4—C5143.8 (5)C3—C2—C17—O1173.5 (5)
N1—C4—C5—C6108.1 (5)C1—C2—C17—O15.9 (8)
N1—C4—C6—C5109.1 (5)C3—C2—C17—C164.6 (6)
C3—N1—C7—C8178.1 (5)C1—C2—C17—C16176.0 (4)
C4—N1—C7—C80.4 (7)C15—C16—C17—O110.1 (7)
C3—N1—C7—C162.8 (7)C7—C16—C17—O1170.6 (4)
C4—N1—C7—C16179.4 (4)C15—C16—C17—C2171.7 (4)
N1—C7—C8—C9179.3 (4)C7—C16—C17—C27.7 (7)
C16—C7—C8—C91.7 (7)C22—N4—C18—C191.2 (9)
C7—C8—C9—C143.7 (7)N4—C18—C19—C200.7 (10)
C7—C8—C9—N2178.5 (4)C18—C19—C20—C210.9 (10)
C10—N2—C9—C88.4 (7)C19—C20—C21—C221.6 (10)
C13—N2—C9—C8120.5 (5)C18—N4—C22—C211.8 (8)
C10—N2—C9—C14169.4 (5)C18—N4—C22—C22ii179.4 (6)
C13—N2—C9—C1461.7 (6)C20—C21—C22—N42.1 (9)
C9—N2—C10—C11171.1 (4)C20—C21—C22—C22ii179.3 (6)
Symmetry codes: (i) x, y1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3iii0.862.222.661 (5)112
O1W—H1WA···N4iv0.86 (2)2.03 (2)2.880 (6)171 (7)
O3W—H3WB···O2Wiv0.852.132.910 (4)153
O1W—H1WB···O3W0.86 (2)2.15 (2)3.009 (5)170 (6)
O2W—H2WA···N30.77 (2)2.53 (3)3.125 (5)136 (4)
Symmetry codes: (iii) x+1, y+1, z1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(C17H17FN3O3)2(H2O)2]·C10H8N2·4H2O
Mr979.89
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0355 (3), 11.1409 (3), 11.8461 (3)
α, β, γ (°)66.905 (2), 68.933 (2), 85.858 (2)
V3)1133.22 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.42 × 0.17 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14989, 5061, 3310
Rint0.042
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.274, 1.08
No. of reflections5061
No. of parameters313
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 0.65

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3i0.862.222.661 (5)111.6
O1W—H1WA···N4ii0.86 (2)2.03 (2)2.880 (6)171 (7)
O3W—H3WB···O2Wii0.852.132.910 (4)153.0
O1W—H1WB···O3W0.86 (2)2.15 (2)3.009 (5)170 (6)
O2W—H2WA···N30.765 (18)2.53 (3)3.125 (5)136 (4)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res. 31, 1349–1357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds