metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(thio­semicarbazide)nickel(II) bis­­[2-(thio­semicarbazonometh­yl)benzene­sulfonate] dihydrate

aDepartment of Chemistry, Qinghai Normal University, Xining 810008, People's Republic of China
*Correspondence e-mail: chenyt@qhnu.edu.cn

(Received 9 June 2009; accepted 10 June 2009; online 13 June 2009)

In the title compound, [Ni(CH5N3S)2](C8H8N3O3S2)2·2H2O, the NiII atom lies on a inversion centre and is four-coordinated by two N and two S atoms of two thio­semicarbazide ligands in an almost square-planar coordination. In the crystal structure, the molecules are linked into a three-dimensional network via C—H⋯O, C—H⋯N, N—H⋯O, N—H⋯S and O—H⋯O hydrogen bonds.

Related literature

For the design and synthesis of organic–inorganic hybrid materials and their potential practical applications, see: Hagrman et al. (1998[Hagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater. 10, 2091-2096.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(CH5N3S)2](C8H8N3O3S2)2·2H2O

  • Mr = 793.61

  • Triclinic, [P \overline 1]

  • a = 7.3853 (8) Å

  • b = 9.9043 (11) Å

  • c = 11.3140 (18) Å

  • α = 86.670 (2)°

  • β = 77.611 (1)°

  • γ = 75.177 (1)°

  • V = 781.40 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.33 × 0.21 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.716, Tmax = 0.872

  • 4091 measured reflections

  • 2717 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.03

  • 2717 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N5 1.903 (2)
Ni1—S3 2.1788 (7)
N5i—Ni1—N5 180
N5i—Ni1—S3 91.59 (6)
N5—Ni1—S3 88.41 (6)
Symmetry code: (i) -x+1, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2ii 0.86 2.73 3.475 (2) 147
N3—H3A⋯N2 0.86 2.29 2.643 (3) 105
N3—H3A⋯O4iii 0.86 2.58 3.224 (3) 132
N4—H4⋯O4iii 0.86 1.97 2.794 (3) 160
O4—H4C⋯O2 0.85 1.97 2.819 (3) 172
O4—H4D⋯O3iv 0.85 2.19 3.036 (3) 172
O4—H4D⋯O4v 0.85 2.58 2.903 (3) 104
N5—H5A⋯O2vi 0.90 1.97 2.837 (3) 163
N5—H5B⋯O1iii 0.90 2.23 2.893 (3) 130
N6—H6A⋯O3vii 0.86 2.03 2.866 (3) 165
N6—H6B⋯S2viii 0.86 2.50 3.298 (2) 156
C2—H2⋯O1 0.93 2.50 3.066 (3) 119
C5—H5⋯O2 0.93 2.38 2.811 (3) 108
C8—H8⋯N2 0.93 2.48 2.790 (4) 100
Symmetry codes: (ii) -x, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x+2, -y+1, -z; (vi) x, y, z+1; (vii) -x, -y+1, -z+1; (viii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of organic/inorganic hybrid materials have attracted intense attention in recent years owing to their potential practical applications, such as antitumor, antidiabetic, antitubercular activities, magnetism and catalysis (Ranford, et al., 1998; Hagrman, et al., 1998). In order to achieve supramolecular transition metal complexes by self-assembly, and to explore the relationship between the structure and the biological properties, as one part of our systematic work, in this paper, we report on the synthesis and crystal structure of the title compound, (I).

As shown in Fig. 1, the NiII atom lies on a inversion centre and it is four-coordinate with two N donors and two S donors of two thiosemicarbazide ligands, and adopts distorted square coordination. The bond distances of Ni1—N5 (N5A) [1.903 (2) Å], Ni1—S3 (S3A) [2.1788 (7)Å] are consistent with the bond lengths reported previously. The bond distances of Ni1—N5 (N5A) are shorter than the Ni1—S3 (S3A), showing that the strength of Ni1—N5 (N5A) are stronger than the Ni1—S3(S3A) (Table 1). In the crystal packing, the molecules form a one-dimensional chain structure by the C—H···O, N—H···O, N—H···S and O—H···O hydrogen bonds (Table 2).

Related literature top

For the design and synthesis of organic–inorganic hybrid materials and their potential practical applications, see: Hagrman et al. (1998); Ranford et al. (1998).

Experimental top

The solution of 1.0 mmol 2-formyl-benzenesulfonate-thiosemicarbazide was added to a solution of 0.5 mmol Ni(NCS)2.4H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Single crystals suitable for X-ray structural analysis was obtained by slowly evaporating from methanol at room temperature.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H = 0.85 Å, C—H = 0.93 Å, N—H = 0.86-0.90 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids.
Bis(thiosemicarbazide)nickel(II) bis[2-(thiosemicarbazonomethyl)benzenesulfonate] dihydrate top
Crystal data top
[Ni(CH5N3S)2](C8H8N3O3S2)2·2H2OZ = 1
Mr = 793.61F(000) = 410
Triclinic, P1Dx = 1.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3853 (8) ÅCell parameters from 2430 reflections
b = 9.9043 (11) Åθ = 2.8–28.3°
c = 11.3140 (18) ŵ = 1.09 mm1
α = 86.670 (2)°T = 298 K
β = 77.611 (1)°Block, light green
γ = 75.177 (1)°0.33 × 0.21 × 0.13 mm
V = 781.40 (17) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2717 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.716, Tmax = 0.872k = 1110
4091 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.4266P]
where P = (Fo2 + 2Fc2)/3
2717 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(CH5N3S)2](C8H8N3O3S2)2·2H2Oγ = 75.177 (1)°
Mr = 793.61V = 781.40 (17) Å3
Triclinic, P1Z = 1
a = 7.3853 (8) ÅMo Kα radiation
b = 9.9043 (11) ŵ = 1.09 mm1
c = 11.3140 (18) ÅT = 298 K
α = 86.670 (2)°0.33 × 0.21 × 0.13 mm
β = 77.611 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2717 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2268 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.872Rint = 0.014
4091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2717 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00001.00000.02441 (13)
S10.34631 (9)0.48280 (6)0.21469 (5)0.02605 (16)
S20.17224 (10)1.04164 (7)0.68768 (6)0.03721 (19)
S30.26167 (9)0.01235 (7)0.91972 (6)0.03314 (17)
N10.0111 (3)0.8006 (2)0.58317 (19)0.0340 (5)
H10.00180.84370.51610.041*
N20.1084 (3)0.6619 (2)0.58171 (19)0.0303 (5)
N30.0510 (4)0.7954 (2)0.7884 (2)0.0484 (7)
H3A0.00340.70750.78460.058*
H3B0.09720.83540.85770.058*
N40.2869 (3)0.2479 (2)0.9094 (2)0.0334 (5)
H40.24780.33640.89890.040*
N50.4569 (3)0.1917 (2)0.95422 (19)0.0290 (5)
H5A0.45270.24201.01890.035*
H5B0.55750.20250.89690.035*
N60.0401 (3)0.2105 (2)0.8361 (2)0.0408 (6)
H6A0.00470.29830.82080.049*
H6B0.02320.15470.81970.049*
O10.4008 (3)0.61284 (18)0.21793 (16)0.0365 (4)
O20.4767 (3)0.38730 (18)0.12150 (15)0.0338 (4)
O30.1474 (3)0.50454 (19)0.20417 (17)0.0375 (5)
O40.8292 (3)0.46182 (19)0.06672 (18)0.0421 (5)
H4C0.72400.43880.09080.051*
H4D0.84650.47340.00950.051*
C10.0636 (4)0.8689 (3)0.6882 (2)0.0302 (6)
C20.1743 (4)0.6065 (3)0.4783 (2)0.0317 (6)
H20.15250.65860.40940.038*
C30.2855 (3)0.4598 (3)0.4667 (2)0.0270 (5)
C40.3691 (3)0.3944 (2)0.3547 (2)0.0251 (5)
C50.4773 (4)0.2568 (3)0.3488 (2)0.0345 (6)
H50.53310.21440.27400.041*
C60.5023 (4)0.1825 (3)0.4542 (3)0.0399 (7)
H60.57530.09060.45010.048*
C70.4188 (4)0.2450 (3)0.5650 (3)0.0421 (7)
H70.43470.19470.63570.051*
C80.3117 (4)0.3820 (3)0.5717 (2)0.0362 (6)
H80.25630.42310.64700.043*
C90.1903 (4)0.1618 (3)0.8844 (2)0.0277 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0261 (2)0.0197 (2)0.0281 (3)0.00600 (18)0.00623 (18)0.00112 (18)
S10.0318 (3)0.0230 (3)0.0241 (3)0.0083 (3)0.0059 (3)0.0011 (2)
S20.0469 (4)0.0278 (4)0.0327 (4)0.0011 (3)0.0082 (3)0.0037 (3)
S30.0340 (4)0.0228 (3)0.0468 (4)0.0076 (3)0.0168 (3)0.0003 (3)
N10.0434 (13)0.0259 (12)0.0269 (12)0.0008 (10)0.0041 (10)0.0013 (9)
N20.0330 (12)0.0240 (11)0.0307 (12)0.0052 (9)0.0015 (9)0.0023 (9)
N30.0765 (19)0.0295 (13)0.0277 (13)0.0020 (12)0.0002 (12)0.0000 (10)
N40.0385 (13)0.0198 (11)0.0445 (13)0.0046 (9)0.0188 (11)0.0049 (9)
N50.0340 (12)0.0276 (11)0.0288 (11)0.0116 (9)0.0093 (9)0.0012 (9)
N60.0429 (14)0.0279 (12)0.0567 (16)0.0054 (10)0.0258 (12)0.0017 (11)
O10.0544 (12)0.0267 (10)0.0301 (10)0.0180 (9)0.0033 (9)0.0025 (8)
O20.0408 (11)0.0333 (10)0.0267 (9)0.0107 (8)0.0032 (8)0.0040 (8)
O30.0351 (10)0.0386 (11)0.0395 (11)0.0074 (8)0.0133 (8)0.0083 (9)
O40.0365 (11)0.0407 (11)0.0508 (12)0.0116 (9)0.0104 (9)0.0009 (9)
C10.0329 (14)0.0282 (14)0.0292 (14)0.0086 (11)0.0039 (11)0.0020 (11)
C20.0365 (15)0.0286 (14)0.0281 (14)0.0054 (11)0.0067 (11)0.0027 (11)
C30.0283 (13)0.0273 (13)0.0268 (13)0.0091 (10)0.0061 (10)0.0018 (10)
C40.0261 (12)0.0230 (13)0.0275 (13)0.0077 (10)0.0075 (10)0.0035 (10)
C50.0387 (15)0.0277 (14)0.0340 (15)0.0036 (12)0.0060 (12)0.0008 (11)
C60.0433 (16)0.0236 (14)0.0476 (18)0.0003 (12)0.0104 (13)0.0077 (12)
C70.0465 (17)0.0413 (17)0.0355 (16)0.0059 (14)0.0112 (13)0.0119 (13)
C80.0419 (16)0.0369 (16)0.0256 (14)0.0058 (12)0.0038 (12)0.0023 (11)
C90.0310 (14)0.0263 (13)0.0245 (13)0.0055 (11)0.0046 (11)0.0026 (10)
Geometric parameters (Å, º) top
Ni1—N5i1.903 (2)N5—H5A0.9000
Ni1—N51.903 (2)N5—H5B0.9000
Ni1—S3i2.1788 (7)N6—C91.310 (3)
Ni1—S32.1788 (7)N6—H6A0.8600
S1—O11.4487 (18)N6—H6B0.8600
S1—O31.4590 (19)O4—H4C0.8500
S1—O21.4655 (18)O4—H4D0.8500
S1—C41.784 (2)C2—C31.472 (3)
S2—C11.694 (3)C2—H20.9300
S3—C91.720 (2)C3—C81.400 (4)
N1—C11.340 (3)C3—C41.400 (3)
N1—N21.377 (3)C4—C51.390 (3)
N1—H10.8600C5—C61.385 (4)
N2—C21.265 (3)C5—H50.9300
N3—C11.319 (3)C6—C71.378 (4)
N3—H3A0.8600C6—H60.9300
N3—H3B0.8600C7—C81.382 (4)
N4—C91.320 (3)C7—H70.9300
N4—N51.423 (3)C8—H80.9300
N4—H40.8600
N5i—Ni1—N5180.000 (1)C9—N6—H6B120.0
N5i—Ni1—S3i88.41 (6)H6A—N6—H6B120.0
N5—Ni1—S3i91.59 (6)H4C—O4—H4D108.2
N5i—Ni1—S391.59 (6)N3—C1—N1117.1 (2)
N5—Ni1—S388.41 (6)N3—C1—S2123.0 (2)
S3i—Ni1—S3180.000 (1)N1—C1—S2119.80 (19)
O1—S1—O3112.53 (11)N2—C2—C3120.2 (2)
O1—S1—O2112.54 (11)N2—C2—H2119.9
O3—S1—O2111.48 (11)C3—C2—H2119.9
O1—S1—C4107.61 (11)C8—C3—C4118.1 (2)
O3—S1—C4107.07 (11)C8—C3—C2119.0 (2)
O2—S1—C4105.09 (11)C4—C3—C2123.0 (2)
C9—S3—Ni197.45 (9)C5—C4—C3120.6 (2)
C1—N1—N2120.6 (2)C5—C4—S1117.17 (19)
C1—N1—H1119.7C3—C4—S1122.23 (18)
N2—N1—H1119.7C6—C5—C4120.1 (2)
C2—N2—N1116.0 (2)C6—C5—H5119.9
C1—N3—H3A120.0C4—C5—H5119.9
C1—N3—H3B120.0C7—C6—C5119.9 (2)
H3A—N3—H3B120.0C7—C6—H6120.0
C9—N4—N5118.9 (2)C5—C6—H6120.0
C9—N4—H4120.6C6—C7—C8120.3 (3)
N5—N4—H4120.6C6—C7—H7119.8
N4—N5—Ni1115.48 (15)C8—C7—H7119.8
N4—N5—H5A108.4C7—C8—C3120.9 (3)
Ni1—N5—H5A108.4C7—C8—H8119.5
N4—N5—H5B108.4C3—C8—H8119.5
Ni1—N5—H5B108.4N6—C9—N4119.8 (2)
H5A—N5—H5B107.5N6—C9—S3121.3 (2)
C9—N6—H6A120.0N4—C9—S3118.86 (19)
N5i—Ni1—S3—C9174.91 (10)O3—S1—C4—C5111.1 (2)
N5—Ni1—S3—C95.09 (10)O2—S1—C4—C57.5 (2)
C1—N1—N2—C2179.7 (2)O1—S1—C4—C351.3 (2)
C9—N4—N5—Ni110.8 (3)O3—S1—C4—C369.9 (2)
S3i—Ni1—N5—N4171.05 (16)O2—S1—C4—C3171.4 (2)
S3—Ni1—N5—N48.95 (16)C3—C4—C5—C60.5 (4)
N2—N1—C1—N34.5 (4)S1—C4—C5—C6179.4 (2)
N2—N1—C1—S2176.70 (18)C4—C5—C6—C70.3 (4)
N1—N2—C2—C3178.2 (2)C5—C6—C7—C80.6 (5)
N2—C2—C3—C81.9 (4)C6—C7—C8—C30.1 (4)
N2—C2—C3—C4177.2 (2)C4—C3—C8—C70.7 (4)
C8—C3—C4—C51.0 (4)C2—C3—C8—C7178.4 (3)
C2—C3—C4—C5178.1 (2)N5—N4—C9—N6175.8 (2)
C8—C3—C4—S1179.8 (2)N5—N4—C9—S35.8 (3)
C2—C3—C4—S10.8 (3)Ni1—S3—C9—N6177.3 (2)
O1—S1—C4—C5127.7 (2)Ni1—S3—C9—N41.0 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2ii0.862.733.475 (2)147
N3—H3A···N20.862.292.643 (3)105
N3—H3A···O4iii0.862.583.224 (3)132
N4—H4···O4iii0.861.972.794 (3)160
O4—H4C···O20.851.972.819 (3)172
O4—H4D···O3iv0.852.193.036 (3)172
O4—H4D···O4v0.852.582.903 (3)104
N5—H5A···O2vi0.901.972.837 (3)163
N5—H5B···O1iii0.902.232.893 (3)130
N6—H6A···O3vii0.862.032.866 (3)165
N6—H6B···S2viii0.862.503.298 (2)156
C2—H2···O10.932.503.066 (3)119
C5—H5···O20.932.382.811 (3)108
C8—H8···N20.932.482.790 (4)100
Symmetry codes: (ii) x, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z; (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(CH5N3S)2](C8H8N3O3S2)2·2H2O
Mr793.61
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3853 (8), 9.9043 (11), 11.3140 (18)
α, β, γ (°)86.670 (2), 77.611 (1), 75.177 (1)
V3)781.40 (17)
Z1
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.33 × 0.21 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.716, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
4091, 2717, 2268
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.03
No. of reflections2717
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N5i1.903 (2)Ni1—S3i2.1788 (7)
Ni1—N51.903 (2)Ni1—S32.1788 (7)
N5i—Ni1—N5180.000 (1)N5i—Ni1—S391.59 (6)
N5i—Ni1—S3i88.41 (6)N5—Ni1—S388.41 (6)
N5—Ni1—S3i91.59 (6)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2ii0.86002.73003.475 (2)147.00
N3—H3A···N20.86002.29002.643 (3)105.00
N3—H3A···O4iii0.86002.58003.224 (3)132.00
N4—H4···O4iii0.86001.97002.794 (3)160.00
O4—H4C···O20.85001.97002.819 (3)172.00
O4—H4D···O3iv0.85002.19003.036 (3)172.00
O4—H4D···O4v0.85002.58002.903 (3)104.00
N5—H5A···O2vi0.90001.97002.837 (3)163.00
N5—H5B···O1iii0.90002.23002.893 (3)130.00
N6—H6A···O3vii0.86002.03002.866 (3)165.00
N6—H6B···S2viii0.86002.50003.298 (2)156.00
C2—H2···O10.93002.50003.066 (3)119.00
C5—H5···O20.93002.38002.811 (3)108.00
C8—H8···N20.93002.48002.790 (4)100.00
Symmetry codes: (ii) x, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z; (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x, y1, z.
 

Acknowledgements

The authors thank the Program for New Century Excellent Talents in Universities for a research grant.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater. 10, 2091–2096.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds