metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(4,4′-bi­pyridine)zinc(II) bis­­(trans-4-hy­droxy­cinnamate)

aCollege of Chemical Engineering and Pharmacy, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: chenling78@126.com

(Received 11 June 2009; accepted 16 June 2009; online 20 June 2009)

The title complex, [Zn(C10H8N2)2(H2O)4](C9H7O3)2, was obtained by the hydro­thermal reaction of zinc sulfate with mixed 4-hydroxy­lcinnamic acid (H2L) and 4,4′-bipyridine (4,4′-bipy) ligands. The complex consists of a centrosymmetric [Zn(4,4′-bipy)2(H2O)4]2+ cation with the metal centre in a distorted ZnN2O4 coordination, and of two HL anions. Extensive O—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the constituents lead to the formation of a three-dimensional network.

Related literature

The main strategy used in the design and synthesis of novel coordination architectures is the building-block approach, see: Han et al. (2005[Han, Z.-B., Cheng, X.-N. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 695-700.]); Wen et al. (2005[Wen, Y.-H., Zhang, J., Wang, X.-Q., Feng, Y.-L., Cheng, J.-K., Li, Z.-J. & Yao, Y.-G. (2005). New J. Chem. 29, 995-997.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For the isostructural nickel analog, see: Zhou et al. (2006[Zhou, Q.-X., Xu, Q.-F., Lu, J.-M. & Xia, X.-W. (2006). Chin. J. Struct. Chem. 25, 1392-1396.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8N2)2(H2O)4](C9H7O3)2

  • Mr = 776.09

  • Triclinic, [P \overline 1]

  • a = 7.0884 (4) Å

  • b = 7.3966 (4) Å

  • c = 17.2518 (10) Å

  • α = 86.972 (3)°

  • β = 83.872 (3)°

  • γ = 81.937 (3)°

  • V = 889.80 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.38 × 0.19 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.84, Tmax = 0.93

  • 12766 measured reflections

  • 4058 independent reflections

  • 3831 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.03

  • 4058 reflections

  • 256 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.818 (15) 1.948 (16) 2.7549 (15) 169 (2)
O1W—H1WB⋯O3i 0.835 (14) 1.875 (15) 2.7069 (14) 174 (2)
O1—H1⋯N1ii 0.824 (17) 1.97 (2) 2.714 (2) 150 (3)
O2W—H2WA⋯O2iii 0.834 (14) 1.869 (15) 2.6833 (14) 165.0 (19)
O2W—H2WB⋯O2iv 0.823 (14) 1.919 (15) 2.7307 (15) 168.3 (19)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+2, -y+1, -z; (iii) x, y+1, z; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The main strategy widely used in design and synthesis of novel coordination architectures is the building-block approach (Yaghi et al., 1998; Han et al., 2005; Wen et al., 2005). 4-Hydroxylcinnamic acid (H2L) is considered as suitable multidentate ligand is based on the following considerations: (a) It has multiple coordination sites, carboxylate group and phenolic hydroxyl group, that may generate structures of higher dimensions. (b) Hydroxyl group can also introduce hydrogen bond in the framework construction. Here, we combined H2L and auxiliary ligand 4,4-bipy as a mixed ligand system to react metal ions. A new Zn(II) complex, [Zn(4,4'-bipy)2(H2O)4].2HL, (I), was obtained unexpected. In this complex, HL ligand is non-coordinated and acts as a dissociative anion.

The X-ray diffraction study shows that the asymmetric unit of (I) is composed of half a Zn atom, one 4,4'-bipy ligand, two coordinated water molecules and one HL ligand. As shown in Fig.1, the ZnII center is six-coordinated by four water molecules and two N atoms of 4,4'-bipy, and displays a slightly distorted [ZnO4N2] octahedral coordination geometry. Four water molecules form a relatively normal equatorial plane of the octahedron, and the Zn1 atom is located in this plane, while two N atoms occupy the axial positions, with an N—Zn—N angle of 180 °. The bond lengths of Zn—Owater are 2.0878 (10) and 2.0881 (10) Å, Zn—N is 2.1728 (12) Å, respectively.

There are extensive hydrogen-bonding interactions involving the HL oxygen atoms, coordinated water molecules and uncoordinated 4,4'-bipy N atoms. A three-dimensional network is formed by these hydrogen-bonding interactions, as shown in Fig. 2. Complex (I) is isostructural with its nickel analog (Zhou et al., 2006).

Related literature top

The main strategy used in the design and synthesis of novel coordination architectures is the building-block approach, see: Han et al. (2005); Wen et al. (2005); Yaghi et al. (1998). For the isostructural nickel analog, see: Zhou et al. (2006).

Experimental top

A mixture of 4-hydroxylcinnamic acid (0.1642 g, 1 mmol), ZnSO4.7H2O (0.1438 g, 0.5 mmol), Na2CO3 (0.053 g, 0.5 mmol) and H2O (15 mL) was sealed in a 25 ml stainless-steel reactor with a Telflon liner and was heated at 433 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving colourless single crystals suitable for X-ray analysis in yield 30% (based on Zn).

Refinement top

The Carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H = 0.93 Å Uiso(H) = 1.2Ueq(C)]. The water and hydroxyl H atoms were located from different maps, and refined with O—H and H—H distances retrained to 0.85 (2) Å and 1.35 (2) Å, and Uiso(H) values of 1.5Ueq(Owater, hydroxyl).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion in (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (A) - x,1 - y,1 - z.]
[Figure 2] Fig. 2. The crystal packing of (I). The dashed lines indicate hydrogen-bonding interactions. H atoms have been omitted for clarity.
Tetraaquabis(4,4'-bipyridine)zinc(II) bis(trans-4-hydroxycinnamate) top
Crystal data top
[Zn(C10H8N2)2(H2O)4](C9H7O3)2Z = 1
Mr = 776.09F(000) = 404
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0884 (4) ÅCell parameters from 7604 reflections
b = 7.3966 (4) Åθ = 2.4–27.6°
c = 17.2518 (10) ŵ = 0.76 mm1
α = 86.972 (3)°T = 296 K
β = 83.872 (3)°Block, colourless
γ = 81.937 (3)°0.38 × 0.19 × 0.10 mm
V = 889.80 (9) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4058 independent reflections
Radiation source: fine-focus sealed tube3831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.84, Tmax = 0.93k = 99
12766 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2285P]
where P = (Fo2 + 2Fc2)/3
4058 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.25 e Å3
7 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C10H8N2)2(H2O)4](C9H7O3)2γ = 81.937 (3)°
Mr = 776.09V = 889.80 (9) Å3
Triclinic, P1Z = 1
a = 7.0884 (4) ÅMo Kα radiation
b = 7.3966 (4) ŵ = 0.76 mm1
c = 17.2518 (10) ÅT = 296 K
α = 86.972 (3)°0.38 × 0.19 × 0.10 mm
β = 83.872 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
4058 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3831 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.93Rint = 0.020
12766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0297 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
4058 reflectionsΔρmin = 0.33 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.02490 (8)
N10.7033 (3)0.7037 (3)0.02925 (11)0.0716 (6)
N20.15006 (17)0.51181 (16)0.38363 (7)0.0286 (2)
O1W0.04162 (15)0.21489 (14)0.50894 (7)0.0353 (2)
H1WA0.103 (3)0.148 (3)0.4760 (11)0.053*
H1WB0.050 (2)0.165 (3)0.5304 (11)0.053*
O11.2210 (3)0.2418 (3)0.12712 (9)0.0791 (5)
H11.211 (4)0.235 (4)0.0803 (11)0.095*
O2W0.25236 (14)0.50834 (15)0.55126 (6)0.0321 (2)
H2WA0.302 (3)0.600 (2)0.5343 (12)0.048*
H2WB0.336 (3)0.419 (2)0.5482 (12)0.048*
O20.44862 (15)0.23700 (15)0.47767 (7)0.0375 (2)
O30.24175 (14)0.04752 (14)0.41292 (6)0.0343 (2)
C10.8995 (2)0.1118 (2)0.28991 (9)0.0364 (3)
H1A0.89600.10620.34400.044*
C21.0548 (2)0.1715 (2)0.24627 (10)0.0418 (4)
H2A1.15350.20670.27090.050*
C31.0634 (3)0.1792 (3)0.16569 (10)0.0469 (4)
C40.9163 (3)0.1275 (3)0.13005 (10)0.0563 (5)
H4A0.92230.13060.07590.068*
C50.7585 (3)0.0705 (3)0.17450 (10)0.0472 (4)
H5A0.65820.03910.14960.057*
C60.7480 (2)0.0596 (2)0.25546 (9)0.0319 (3)
C70.5805 (2)0.0009 (2)0.30247 (9)0.0329 (3)
H7A0.46960.00100.27810.039*
C80.5768 (2)0.0550 (2)0.37683 (9)0.0320 (3)
H8A0.68810.05470.40090.038*
C90.40854 (19)0.11645 (18)0.42536 (8)0.0274 (3)
C100.5155 (4)0.7408 (5)0.03681 (14)0.0983 (11)
H10A0.45630.79520.00580.118*
C110.4004 (3)0.7038 (5)0.10411 (13)0.0830 (9)
H11A0.26810.73260.10560.100*
C120.4808 (2)0.6252 (2)0.16828 (9)0.0402 (4)
C130.6782 (3)0.5875 (3)0.16090 (13)0.0649 (6)
H13A0.74170.53480.20270.078*
C140.7814 (3)0.6288 (4)0.09087 (15)0.0740 (7)
H14A0.91410.60180.08740.089*
C150.3318 (2)0.4346 (2)0.36835 (9)0.0320 (3)
H15A0.38630.35480.40580.038*
C160.4417 (2)0.4678 (2)0.29975 (9)0.0358 (3)
H16A0.56800.41220.29200.043*
C170.3643 (2)0.5841 (2)0.24213 (9)0.0326 (3)
C180.1735 (2)0.6606 (2)0.25723 (9)0.0384 (3)
H18A0.11420.73750.22000.046*
C190.0736 (2)0.6215 (2)0.32754 (9)0.0364 (3)
H19A0.05350.67400.33660.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02173 (12)0.02703 (12)0.02486 (13)0.00473 (8)0.00350 (8)0.00093 (8)
N10.0743 (13)0.0967 (15)0.0436 (10)0.0347 (11)0.0228 (9)0.0019 (10)
N20.0265 (6)0.0313 (6)0.0265 (6)0.0037 (4)0.0028 (4)0.0002 (5)
O1W0.0317 (5)0.0268 (5)0.0448 (6)0.0058 (4)0.0115 (5)0.0023 (4)
O10.0665 (10)0.1314 (16)0.0453 (8)0.0548 (10)0.0178 (7)0.0054 (9)
O2W0.0242 (5)0.0359 (5)0.0356 (6)0.0068 (4)0.0003 (4)0.0042 (4)
O20.0299 (5)0.0385 (6)0.0417 (6)0.0061 (4)0.0016 (4)0.0127 (5)
O30.0243 (5)0.0373 (5)0.0387 (6)0.0017 (4)0.0041 (4)0.0032 (4)
C10.0344 (8)0.0457 (8)0.0285 (7)0.0089 (6)0.0010 (6)0.0044 (6)
C20.0339 (8)0.0531 (10)0.0391 (9)0.0137 (7)0.0016 (7)0.0024 (7)
C30.0435 (9)0.0587 (11)0.0373 (9)0.0166 (8)0.0113 (7)0.0042 (8)
C40.0643 (12)0.0818 (14)0.0253 (8)0.0288 (11)0.0065 (8)0.0044 (8)
C50.0474 (10)0.0654 (11)0.0323 (8)0.0232 (8)0.0028 (7)0.0032 (8)
C60.0305 (7)0.0342 (7)0.0294 (7)0.0051 (6)0.0034 (6)0.0040 (6)
C70.0274 (7)0.0353 (7)0.0353 (8)0.0061 (6)0.0009 (6)0.0026 (6)
C80.0234 (6)0.0355 (7)0.0359 (8)0.0055 (5)0.0020 (6)0.0047 (6)
C90.0255 (6)0.0265 (6)0.0291 (7)0.0044 (5)0.0038 (5)0.0013 (5)
C100.0731 (17)0.179 (3)0.0418 (12)0.0355 (19)0.0030 (11)0.0382 (17)
C110.0505 (12)0.153 (3)0.0425 (12)0.0225 (14)0.0033 (9)0.0329 (14)
C120.0440 (9)0.0449 (9)0.0303 (8)0.0132 (7)0.0112 (7)0.0007 (6)
C130.0474 (11)0.0872 (16)0.0521 (12)0.0041 (10)0.0168 (9)0.0156 (11)
C140.0547 (12)0.0988 (18)0.0613 (14)0.0142 (12)0.0271 (11)0.0082 (13)
C150.0299 (7)0.0346 (7)0.0291 (7)0.0009 (6)0.0016 (6)0.0024 (6)
C160.0273 (7)0.0430 (8)0.0337 (8)0.0004 (6)0.0056 (6)0.0009 (6)
C170.0340 (7)0.0351 (7)0.0275 (7)0.0075 (6)0.0068 (6)0.0015 (6)
C180.0377 (8)0.0445 (8)0.0289 (7)0.0018 (6)0.0020 (6)0.0073 (6)
C190.0291 (7)0.0449 (8)0.0311 (8)0.0029 (6)0.0032 (6)0.0035 (6)
Geometric parameters (Å, º) top
Zn1—O1W2.0878 (10)C4—H4A0.9300
Zn1—O1Wi2.0878 (10)C5—C61.389 (2)
Zn1—O2W2.0881 (10)C5—H5A0.9300
Zn1—O2Wi2.0881 (10)C6—C71.4740 (19)
Zn1—N2i2.1728 (12)C7—C81.322 (2)
Zn1—N22.1728 (12)C7—H7A0.9300
N1—C141.312 (3)C8—C91.4931 (18)
N1—C101.314 (3)C8—H8A0.9300
N2—C151.3388 (18)C10—C111.384 (3)
N2—C191.3396 (19)C10—H10A0.9300
O1W—H1WA0.818 (15)C11—C121.365 (3)
O1W—H1WB0.835 (14)C11—H11A0.9300
O1—C31.364 (2)C12—C131.381 (3)
O1—H10.824 (17)C12—C171.484 (2)
O2W—H2WA0.834 (14)C13—C141.386 (3)
O2W—H2WB0.823 (14)C13—H13A0.9300
O2—C91.2605 (17)C14—H14A0.9300
O3—C91.2559 (17)C15—C161.376 (2)
C1—C21.377 (2)C15—H15A0.9300
C1—C61.390 (2)C16—C171.387 (2)
C1—H1A0.9300C16—H16A0.9300
C2—C31.383 (2)C17—C181.394 (2)
C2—H2A0.9300C18—C191.376 (2)
C3—C41.373 (3)C18—H18A0.9300
C4—C51.390 (2)C19—H19A0.9300
O1W—Zn1—O1Wi180.0C5—C6—C7120.99 (14)
O1W—Zn1—O2W90.44 (4)C1—C6—C7121.73 (14)
O1Wi—Zn1—O2W89.56 (4)C8—C7—C6124.58 (14)
O1W—Zn1—O2Wi89.56 (4)C8—C7—H7A117.7
O1Wi—Zn1—O2Wi90.44 (4)C6—C7—H7A117.7
O2W—Zn1—O2Wi180.0C7—C8—C9125.33 (14)
O1W—Zn1—N2i86.05 (4)C7—C8—H8A117.3
O1Wi—Zn1—N2i93.95 (4)C9—C8—H8A117.3
O2W—Zn1—N2i88.47 (4)O3—C9—O2124.73 (12)
O2Wi—Zn1—N2i91.53 (4)O3—C9—C8120.02 (13)
O1W—Zn1—N293.95 (4)O2—C9—C8115.24 (12)
O1Wi—Zn1—N286.05 (4)N1—C10—C11124.1 (2)
O2W—Zn1—N291.53 (4)N1—C10—H10A117.9
O2Wi—Zn1—N288.47 (4)C11—C10—H10A117.9
N2i—Zn1—N2180.0C12—C11—C10120.1 (2)
C14—N1—C10116.03 (18)C12—C11—H11A120.0
C15—N2—C19117.08 (12)C10—C11—H11A120.0
C15—N2—Zn1121.81 (10)C11—C12—C13116.05 (17)
C19—N2—Zn1120.28 (9)C11—C12—C17122.30 (16)
Zn1—O1W—H1WA124.9 (15)C13—C12—C17121.65 (17)
Zn1—O1W—H1WB116.7 (14)C12—C13—C14119.7 (2)
H1WA—O1W—H1WB109.5 (18)C12—C13—H13A120.2
C3—O1—H1106 (2)C14—C13—H13A120.2
Zn1—O2W—H2WA110.0 (14)N1—C14—C13124.0 (2)
Zn1—O2W—H2WB118.7 (14)N1—C14—H14A118.0
H2WA—O2W—H2WB108.1 (17)C13—C14—H14A118.0
C2—C1—C6121.95 (15)N2—C15—C16123.05 (14)
C2—C1—H1A119.0N2—C15—H15A118.5
C6—C1—H1A119.0C16—C15—H15A118.5
C1—C2—C3119.85 (16)C15—C16—C17120.05 (13)
C1—C2—H2A120.1C15—C16—H16A120.0
C3—C2—H2A120.1C17—C16—H16A120.0
O1—C3—C4124.55 (16)C16—C17—C18116.86 (13)
O1—C3—C2115.97 (17)C16—C17—C12121.15 (14)
C4—C3—C2119.48 (15)C18—C17—C12121.99 (14)
C3—C4—C5120.35 (16)C19—C18—C17119.57 (14)
C3—C4—H4A119.8C19—C18—H18A120.2
C5—C4—H4A119.8C17—C18—H18A120.2
C6—C5—C4121.10 (17)N2—C19—C18123.35 (14)
C6—C5—H5A119.5N2—C19—H19A118.3
C4—C5—H5A119.5C18—C19—H19A118.3
C5—C6—C1117.26 (14)
O1W—Zn1—N2—C1557.34 (12)C14—N1—C10—C110.7 (5)
O1Wi—Zn1—N2—C15122.66 (12)N1—C10—C11—C120.5 (6)
O2W—Zn1—N2—C1533.20 (12)C10—C11—C12—C130.1 (4)
O2Wi—Zn1—N2—C15146.80 (12)C10—C11—C12—C17179.5 (3)
O1W—Zn1—N2—C19133.37 (12)C11—C12—C13—C140.4 (4)
O1Wi—Zn1—N2—C1946.63 (12)C17—C12—C13—C14179.8 (2)
O2W—Zn1—N2—C19136.08 (12)C10—N1—C14—C130.4 (4)
O2Wi—Zn1—N2—C1943.92 (12)C12—C13—C14—N10.2 (4)
C6—C1—C2—C30.6 (3)C19—N2—C15—C162.1 (2)
C1—C2—C3—O1179.30 (18)Zn1—N2—C15—C16167.54 (12)
C1—C2—C3—C40.2 (3)N2—C15—C16—C170.9 (2)
O1—C3—C4—C5178.0 (2)C15—C16—C17—C180.9 (2)
C2—C3—C4—C50.9 (3)C15—C16—C17—C12178.75 (15)
C3—C4—C5—C61.8 (3)C11—C12—C17—C16164.8 (2)
C4—C5—C6—C11.4 (3)C13—C12—C17—C1615.9 (3)
C4—C5—C6—C7180.00 (17)C11—C12—C17—C1815.6 (3)
C2—C1—C6—C50.2 (2)C13—C12—C17—C18163.7 (2)
C2—C1—C6—C7178.80 (15)C16—C17—C18—C191.3 (2)
C5—C6—C7—C8163.73 (17)C12—C17—C18—C19178.31 (16)
C1—C6—C7—C817.7 (2)C15—N2—C19—C181.6 (2)
C6—C7—C8—C9179.92 (14)Zn1—N2—C19—C18168.18 (13)
C7—C8—C9—O332.7 (2)C17—C18—C19—N20.1 (3)
C7—C8—C9—O2147.76 (16)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.82 (2)1.95 (2)2.7549 (15)169 (2)
O1W—H1WB···O3ii0.84 (1)1.88 (2)2.7069 (14)174 (2)
O1—H1···N1iii0.82 (2)1.97 (2)2.714 (2)150 (3)
O2W—H2WA···O2iv0.83 (1)1.87 (2)2.6833 (14)165 (2)
O2W—H2WB···O2v0.82 (1)1.92 (2)2.7307 (15)168 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x+2, y+1, z; (iv) x, y+1, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)2(H2O)4](C9H7O3)2
Mr776.09
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0884 (4), 7.3966 (4), 17.2518 (10)
α, β, γ (°)86.972 (3), 83.872 (3), 81.937 (3)
V3)889.80 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.38 × 0.19 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.84, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
12766, 4058, 3831
Rint0.020
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.03
No. of reflections4058
No. of parameters256
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.33

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.818 (15)1.948 (16)2.7549 (15)169 (2)
O1W—H1WB···O3i0.835 (14)1.875 (15)2.7069 (14)174 (2)
O1—H1···N1ii0.824 (17)1.97 (2)2.714 (2)150 (3)
O2W—H2WA···O2iii0.834 (14)1.869 (15)2.6833 (14)165.0 (19)
O2W—H2WB···O2iv0.823 (14)1.919 (15)2.7307 (15)168.3 (19)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z+1.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Z.-B., Cheng, X.-N. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 695–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, J., Wang, X.-Q., Feng, Y.-L., Cheng, J.-K., Li, Z.-J. & Yao, Y.-G. (2005). New J. Chem. 29, 995–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar
First citationZhou, Q.-X., Xu, Q.-F., Lu, J.-M. & Xia, X.-W. (2006). Chin. J. Struct. Chem. 25, 1392–1396.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds