metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(norfloxacinato)manganese(II) 2,2′-bi­pyridine solvate tetra­hydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 11 June 2009; accepted 14 June 2009; online 20 June 2009)

In the crystal structure of the title compound {systematic name: diaqua­bis[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato]manganese(II) 2,2′-bipyridine solvate tetra­hydrate}, [Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2O, the pyridone O atom and one carboxyl­ate O atom of the two norfloxacin ligands are bound to the MnII ion, which is located on an inversion centre, and occupy equatorial positions, while two aqua O atoms lie in apical positions, resulting in a distorted octa­hedral geometry. The crystal packing is stabilized by N—H⋯O and O—H⋯O hydrogen-bonding interactions.

Related literature

For background, see: Dukhande et al. (2006[Dukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res. 31, 1349-1357.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2O

  • Mr = 955.87

  • Triclinic, [P \overline 1]

  • a = 9.5179 (4) Å

  • b = 11.4645 (2) Å

  • c = 11.6617 (2) Å

  • α = 118.8440 (10)°

  • β = 93.398 (2)°

  • γ = 97.258 (2)°

  • V = 1095.06 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.38 × 0.18 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.981

  • 13676 measured reflections

  • 3856 independent reflections

  • 3208 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.199

  • S = 1.07

  • 3856 reflections

  • 310 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.86 2.23 2.725 (4) 117
N3—H3A⋯O3W 0.86 2.54 2.992 (4) 114
O2W—H2WB⋯O2Wii 0.85 1.97 2.789 (5) 163
O3W—H3WA⋯O3Wiii 0.784 (19) 2.03 (2) 2.781 (6) 162 (6)
O3W—H3WB⋯N3 0.754 (19) 2.32 (4) 2.992 (4) 149 (5)
O1W—H1WA⋯N4 0.863 (19) 1.96 (2) 2.813 (4) 168 (5)
O1W—H1WB⋯O2W 0.842 (19) 2.24 (3) 3.050 (4) 162 (5)
O2W—H2WA⋯O1W 0.730 (17) 2.65 (4) 3.050 (4) 117 (4)
Symmetry codes: (i) x-1, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x-1, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin), is the third generation quinolone antibacterial drug with broad-spectrum antibacterial activity, especially for gram-negative bacteria. It can interfere with the synthesis of DNA, destroy the fission of cells in order to sterilize by inhibiting DNA gyrase. Manganese is an important trace element needed for normal physiological functions and development. It is also a cofactor or required metal ion for many enzymes, such as superoxide dismutase, glutamine synthetase and arginase (Dukhande et al., 2006). Synthesis, characterization and biological activity studies of the manganese complexes have become one of the most attractive research fields in modern bioinorganic chemistry.

In the title compound, the Mn(II) ion in a inversion centre is coordinated with four oxygen atoms of the norfloxacin ligands in the equatorial positions while two oxygen atoms of the water occupy the axial positions resulting in a distorted octahedral geometry around the central metal atom. The Mn—O bond distances arising from the two carbonyl oxygen atoms O1 are longer, [2.157 (2) Å], than those arising from the carboxylate oxygen atoms O2 [2.132 (2) Å]. The axial average linkages between manganese and oxygen atoms of water are substantially longer [2.212 (3) Å] than the equatorial bond distances. The bond angles O1—Mn1—O1A, O2—Mn1—O2A and O1W—Mn1—O1WA are 180° while the bond angles O2—Mn1—O1 and O2A—Mn1—O1 open up slightly from 82.73 (9)° to 97.27 (9)°, resulting in a slight distortion from the idealized octahedral geometry.

The crystal packing is stabilized by N—H···O and O—H···O hydrogen bonding interactions (Table 1).

Related literature top

For related literature, see: Dukhande et al. (2006).

Experimental top

A mixture of 0.1 mmol norfloxacin, 0.1 mmol MnCl24H2O, 0.1 mmol 2,2'-bipyridine and 10 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 433 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block yellow crystals were obtained.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C),]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability [symmetry code: (A) -x, -y, -z].
Diaquabis[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline- 3-carboxylato]manganese(II) 2,2'-bipyridine solvate tetrahydrate top
Crystal data top
[Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2OZ = 1
Mr = 955.87F(000) = 501
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5179 (4) ÅCell parameters from 3687 reflections
b = 11.4645 (2) Åθ = 2.0–25.0°
c = 11.6617 (2) ŵ = 0.38 mm1
α = 118.844 (1)°T = 296 K
β = 93.398 (2)°Block, yellow
γ = 97.258 (2)°0.38 × 0.18 × 0.05 mm
V = 1095.06 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3856 independent reflections
Radiation source: fine-focus sealed tube3208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.921, Tmax = 0.981k = 1313
13676 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1291P)2 + 0.9928P]
where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 1.14 e Å3
9 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2Oγ = 97.258 (2)°
Mr = 955.87V = 1095.06 (5) Å3
Triclinic, P1Z = 1
a = 9.5179 (4) ÅMo Kα radiation
b = 11.4645 (2) ŵ = 0.38 mm1
c = 11.6617 (2) ÅT = 296 K
α = 118.844 (1)°0.38 × 0.18 × 0.05 mm
β = 93.398 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3856 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3208 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.981Rint = 0.033
13676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0609 restraints
wR(F2) = 0.199H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.14 e Å3
3856 reflectionsΔρmin = 0.51 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.0298 (3)
F10.3877 (2)0.5950 (2)0.0804 (2)0.0422 (5)
N10.1045 (3)0.2919 (3)0.2598 (3)0.0304 (6)
N20.3216 (3)0.6391 (3)0.1294 (3)0.0317 (7)
N30.5036 (3)0.8056 (3)0.2005 (3)0.0387 (7)
H3A0.55710.82270.24940.046*
N40.1120 (3)0.0184 (3)0.3595 (3)0.0409 (7)
O1W0.0371 (3)0.1057 (3)0.2090 (3)0.0439 (7)
H1WA0.047 (5)0.071 (4)0.260 (4)0.066*
H1WB0.012 (5)0.182 (3)0.263 (4)0.066*
O10.0540 (3)0.1938 (2)0.0106 (2)0.0356 (6)
O20.2086 (2)0.0111 (2)0.0669 (3)0.0363 (6)
O2W0.0743 (2)0.3979 (2)0.4232 (2)0.0312 (5)
H2WB0.01550.45150.45610.037*
H2WA0.074 (4)0.366 (4)0.352 (2)0.047*
O30.3729 (3)0.0402 (3)0.1876 (3)0.0445 (7)
O3W0.6092 (3)0.6120 (4)0.4471 (3)0.0510 (8)
H3WA0.553 (5)0.548 (3)0.462 (5)0.076*
H3WB0.610 (6)0.678 (3)0.385 (4)0.076*
C10.1824 (3)0.2018 (3)0.2366 (3)0.0294 (7)
H1A0.27170.15970.28700.035*
C20.1411 (3)0.1664 (3)0.1442 (3)0.0277 (7)
C30.2478 (3)0.0647 (3)0.1329 (3)0.0304 (7)
C40.0043 (3)0.2260 (3)0.0674 (3)0.0264 (7)
C50.0729 (3)0.3357 (3)0.0820 (3)0.0265 (7)
C60.1985 (3)0.4144 (3)0.0032 (3)0.0291 (7)
H6A0.23070.39890.07070.035*
C70.2736 (3)0.5133 (3)0.0123 (3)0.0296 (7)
C80.2372 (3)0.5373 (3)0.1170 (3)0.0283 (7)
C90.1118 (3)0.4615 (3)0.1998 (3)0.0297 (7)
H9A0.08300.47490.26960.036*
C100.0263 (3)0.3640 (3)0.1805 (3)0.0268 (7)
C110.1577 (4)0.3222 (5)0.3635 (4)0.0483 (10)
H11A0.10150.28500.43570.058*
H11B0.14080.41960.32660.058*
C120.3105 (5)0.2698 (6)0.4181 (5)0.0667 (14)
H12A0.33390.29310.48480.100*
H12B0.32890.17320.45630.100*
H12C0.36790.30910.34860.100*
C130.2658 (4)0.6694 (3)0.2297 (4)0.0333 (8)
H13A0.27530.59770.31680.040*
H13B0.16500.67410.22560.040*
C140.3468 (4)0.8034 (4)0.2073 (4)0.0348 (8)
H14A0.32650.87640.12550.042*
H14B0.31420.81820.27890.042*
C150.5550 (4)0.7743 (4)0.0974 (5)0.0480 (10)
H15A0.65680.77330.09550.058*
H15B0.53860.84320.01130.058*
C160.4754 (4)0.6377 (4)0.1281 (5)0.0428 (10)
H16A0.50950.61580.06200.051*
H16B0.49330.56880.21360.051*
C170.0729 (4)0.0353 (4)0.4622 (3)0.0361 (8)
C180.1623 (5)0.1148 (5)0.4961 (5)0.0542 (11)
H18A0.13290.12650.56680.065*
C190.2967 (5)0.1769 (6)0.4233 (5)0.0672 (14)
H19A0.35870.23050.44490.081*
C200.3377 (5)0.1586 (5)0.3188 (5)0.0598 (12)
H20A0.42780.19780.26920.072*
C210.2410 (4)0.0807 (4)0.2904 (4)0.0492 (10)
H21A0.26710.07050.21810.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0279 (4)0.0306 (4)0.0384 (5)0.0017 (3)0.0012 (3)0.0249 (3)
F10.0336 (11)0.0393 (11)0.0501 (13)0.0151 (9)0.0137 (9)0.0265 (10)
N10.0239 (14)0.0362 (15)0.0370 (16)0.0042 (11)0.0018 (12)0.0255 (13)
N20.0214 (14)0.0323 (15)0.0502 (18)0.0029 (11)0.0024 (12)0.0291 (14)
N30.0256 (14)0.0447 (18)0.060 (2)0.0028 (13)0.0082 (14)0.0385 (16)
N40.0401 (18)0.0442 (18)0.0402 (17)0.0010 (14)0.0012 (14)0.0241 (15)
O1W0.0558 (17)0.0430 (15)0.0369 (14)0.0043 (13)0.0047 (13)0.0242 (12)
O10.0354 (13)0.0339 (13)0.0440 (14)0.0065 (10)0.0067 (11)0.0286 (12)
O20.0286 (12)0.0425 (14)0.0511 (15)0.0023 (10)0.0017 (11)0.0360 (13)
O2W0.0290 (12)0.0291 (12)0.0373 (13)0.0011 (9)0.0061 (10)0.0205 (11)
O30.0266 (13)0.0507 (16)0.0700 (19)0.0133 (11)0.0098 (12)0.0470 (15)
O3W0.0297 (14)0.072 (2)0.0455 (17)0.0075 (14)0.0191 (13)0.0240 (15)
C10.0230 (15)0.0297 (17)0.0387 (18)0.0024 (13)0.0007 (13)0.0214 (15)
C20.0228 (15)0.0278 (16)0.0358 (18)0.0001 (13)0.0041 (13)0.0193 (14)
C30.0263 (17)0.0306 (17)0.0378 (19)0.0021 (13)0.0033 (14)0.0215 (15)
C40.0276 (16)0.0245 (16)0.0314 (17)0.0023 (13)0.0056 (13)0.0176 (14)
C50.0237 (15)0.0254 (16)0.0338 (17)0.0010 (12)0.0032 (13)0.0180 (14)
C60.0281 (17)0.0302 (17)0.0329 (17)0.0017 (13)0.0010 (14)0.0199 (14)
C70.0240 (16)0.0270 (16)0.0363 (18)0.0027 (13)0.0012 (13)0.0168 (14)
C80.0263 (16)0.0249 (16)0.0392 (19)0.0013 (13)0.0054 (14)0.0207 (15)
C90.0273 (16)0.0314 (17)0.0364 (18)0.0009 (13)0.0008 (14)0.0232 (15)
C100.0238 (16)0.0266 (16)0.0329 (17)0.0011 (13)0.0027 (13)0.0179 (14)
C110.036 (2)0.069 (3)0.058 (3)0.0065 (18)0.0070 (18)0.051 (2)
C120.056 (3)0.090 (4)0.069 (3)0.001 (3)0.007 (2)0.055 (3)
C130.0281 (17)0.0341 (18)0.044 (2)0.0046 (14)0.0002 (15)0.0273 (16)
C140.0279 (17)0.0366 (19)0.049 (2)0.0003 (14)0.0070 (15)0.0292 (17)
C150.0270 (18)0.055 (2)0.075 (3)0.0097 (17)0.0036 (18)0.047 (2)
C160.0243 (17)0.047 (2)0.075 (3)0.0002 (15)0.0061 (17)0.046 (2)
C170.0365 (19)0.0367 (19)0.0349 (19)0.0026 (15)0.0036 (16)0.0186 (16)
C180.045 (2)0.071 (3)0.057 (3)0.008 (2)0.001 (2)0.045 (2)
C190.048 (3)0.084 (4)0.076 (3)0.020 (2)0.004 (2)0.053 (3)
C200.043 (2)0.070 (3)0.064 (3)0.006 (2)0.006 (2)0.035 (3)
C210.046 (2)0.058 (3)0.042 (2)0.0024 (19)0.0021 (18)0.027 (2)
Geometric parameters (Å, º) top
Mn1—O22.132 (2)C5—C101.400 (5)
Mn1—O2i2.132 (2)C6—C71.356 (5)
Mn1—O1i2.157 (2)C6—H6A0.9300
Mn1—O12.157 (2)C7—C81.408 (5)
Mn1—O1Wi2.212 (3)C8—C91.380 (5)
Mn1—O1W2.212 (3)C9—C101.414 (4)
F1—C71.361 (4)C9—H9A0.9300
N1—C11.338 (4)C11—C121.477 (6)
N1—C101.398 (4)C11—H11A0.9700
N1—C111.488 (4)C11—H11B0.9700
N2—C81.403 (4)C12—H12A0.9600
N2—C131.462 (4)C12—H12B0.9600
N2—C161.465 (4)C12—H12C0.9600
N3—C151.486 (5)C13—C141.520 (4)
N3—C141.486 (4)C13—H13A0.9700
N3—H3A0.8600C13—H13B0.9700
N4—C211.332 (5)C14—H14A0.9700
N4—C171.342 (5)C14—H14B0.9700
O1W—H1WA0.86 (5)C15—C161.510 (5)
O1W—H1WB0.84 (4)C15—H15A0.9700
O1—C41.260 (4)C15—H15B0.9700
O2—C31.261 (4)C16—H16A0.9700
O2W—H2WB0.8500C16—H16B0.9700
O2W—H2WA0.730 (17)C17—C181.380 (6)
O3—C31.248 (4)C17—C17ii1.497 (7)
O3W—H3WA0.79 (5)C18—C191.386 (6)
O3W—H3WB0.75 (4)C18—H18A0.9300
C1—C21.376 (5)C19—C201.376 (7)
C1—H1A0.9300C19—H19A0.9300
C2—C41.418 (4)C20—C211.366 (6)
C2—C31.508 (4)C20—H20A0.9300
C4—C51.463 (4)C21—H21A0.9300
C5—C61.397 (4)
O2—Mn1—O2i180.00 (14)C8—C9—H9A119.4
O2—Mn1—O1i97.27 (9)C10—C9—H9A119.4
O2i—Mn1—O1i82.73 (9)N1—C10—C5118.4 (3)
O2—Mn1—O182.73 (9)N1—C10—C9121.4 (3)
O2i—Mn1—O197.27 (9)C5—C10—C9120.2 (3)
O1i—Mn1—O1180.00 (18)C12—C11—N1115.8 (3)
O2—Mn1—O1Wi91.93 (10)C12—C11—H11A108.3
O2i—Mn1—O1Wi88.07 (10)N1—C11—H11A108.3
O1i—Mn1—O1Wi90.90 (10)C12—C11—H11B108.3
O1—Mn1—O1Wi89.10 (10)N1—C11—H11B108.3
O2—Mn1—O1W88.07 (10)H11A—C11—H11B107.4
O2i—Mn1—O1W91.93 (10)C11—C12—H12A109.5
O1i—Mn1—O1W89.10 (10)C11—C12—H12B109.5
O1—Mn1—O1W90.90 (10)H12A—C12—H12B109.5
O1Wi—Mn1—O1W180.00 (16)C11—C12—H12C109.5
C1—N1—C10119.2 (3)H12A—C12—H12C109.5
C1—N1—C11121.4 (3)H12B—C12—H12C109.5
C10—N1—C11119.4 (3)N2—C13—C14110.3 (3)
C8—N2—C13116.8 (3)N2—C13—H13A109.6
C8—N2—C16117.3 (3)C14—C13—H13A109.6
C13—N2—C16111.3 (3)N2—C13—H13B109.6
C15—N3—C14110.4 (3)C14—C13—H13B109.6
C15—N3—H3A124.8H13A—C13—H13B108.1
C14—N3—H3A124.8N3—C14—C13111.6 (3)
C21—N4—C17117.9 (3)N3—C14—H14A109.3
Mn1—O1W—H1WA126 (3)C13—C14—H14A109.3
Mn1—O1W—H1WB121 (3)N3—C14—H14B109.3
H1WA—O1W—H1WB100 (3)C13—C14—H14B109.3
C4—O1—Mn1124.5 (2)H14A—C14—H14B108.0
C3—O2—Mn1130.6 (2)N3—C15—C16109.1 (3)
H2WB—O2W—H2WA117.1N3—C15—H15A109.9
H3WA—O3W—H3WB120 (4)C16—C15—H15A109.9
N1—C1—C2125.3 (3)N3—C15—H15B109.9
N1—C1—H1A117.3C16—C15—H15B109.9
C2—C1—H1A117.3H15A—C15—H15B108.3
C1—C2—C4119.1 (3)N2—C16—C15110.1 (3)
C1—C2—C3116.2 (3)N2—C16—H16A109.6
C4—C2—C3124.7 (3)C15—C16—H16A109.6
O3—C3—O2123.0 (3)N2—C16—H16B109.6
O3—C3—C2117.6 (3)C15—C16—H16B109.6
O2—C3—C2119.3 (3)H16A—C16—H16B108.2
O1—C4—C2126.3 (3)N4—C17—C18121.7 (4)
O1—C4—C5118.6 (3)N4—C17—C17ii116.9 (4)
C2—C4—C5115.1 (3)C18—C17—C17ii121.5 (4)
C6—C5—C10118.3 (3)C17—C18—C19119.0 (4)
C6—C5—C4119.6 (3)C17—C18—H18A120.5
C10—C5—C4122.1 (3)C19—C18—H18A120.5
C7—C6—C5120.1 (3)C20—C19—C18119.5 (4)
C7—C6—H6A119.9C20—C19—H19A120.2
C5—C6—H6A119.9C18—C19—H19A120.2
C6—C7—F1117.7 (3)C21—C20—C19117.5 (4)
C6—C7—C8123.4 (3)C21—C20—H20A121.2
F1—C7—C8118.9 (3)C19—C20—H20A121.2
C9—C8—N2122.8 (3)N4—C21—C20124.4 (4)
C9—C8—C7116.5 (3)N4—C21—H21A117.8
N2—C8—C7120.5 (3)C20—C21—H21A117.8
C8—C9—C10121.2 (3)
O2—Mn1—O1—C433.6 (3)C16—N2—C8—C752.3 (5)
O2i—Mn1—O1—C4146.4 (3)C6—C7—C8—C95.4 (5)
O1Wi—Mn1—O1—C4125.6 (3)F1—C7—C8—C9173.0 (3)
O1W—Mn1—O1—C454.4 (3)C6—C7—C8—N2178.3 (3)
O1i—Mn1—O2—C3147.8 (3)F1—C7—C8—N23.3 (5)
O1—Mn1—O2—C332.2 (3)N2—C8—C9—C10177.1 (3)
O1Wi—Mn1—O2—C3121.0 (3)C7—C8—C9—C100.8 (5)
O1W—Mn1—O2—C359.0 (3)C1—N1—C10—C52.0 (5)
C10—N1—C1—C24.2 (5)C11—N1—C10—C5178.8 (3)
C11—N1—C1—C2179.2 (3)C1—N1—C10—C9179.2 (3)
N1—C1—C2—C41.4 (5)C11—N1—C10—C92.5 (5)
N1—C1—C2—C3178.6 (3)C6—C5—C10—N1175.6 (3)
Mn1—O2—C3—O3165.0 (3)C4—C5—C10—N15.4 (5)
Mn1—O2—C3—C216.9 (5)C6—C5—C10—C95.7 (5)
C1—C2—C3—O313.4 (5)C4—C5—C10—C9173.4 (3)
C4—C2—C3—O3166.6 (3)C8—C9—C10—N1176.7 (3)
C1—C2—C3—O2168.3 (3)C8—C9—C10—C54.6 (5)
C4—C2—C3—O211.6 (5)C1—N1—C11—C1212.3 (6)
Mn1—O1—C4—C222.6 (5)C10—N1—C11—C12164.3 (4)
Mn1—O1—C4—C5157.9 (2)C8—N2—C13—C14165.1 (3)
C1—C2—C4—O1172.2 (3)C16—N2—C13—C1456.5 (4)
C3—C2—C4—O17.8 (5)C15—N3—C14—C1355.3 (4)
C1—C2—C4—C58.3 (4)N2—C13—C14—N354.1 (4)
C3—C2—C4—C5171.8 (3)C14—N3—C15—C1657.8 (4)
O1—C4—C5—C69.1 (5)C8—N2—C16—C15161.5 (3)
C2—C4—C5—C6170.5 (3)C13—N2—C16—C1560.3 (4)
O1—C4—C5—C10170.0 (3)N3—C15—C16—N260.2 (4)
C2—C4—C5—C1010.4 (5)C21—N4—C17—C180.2 (6)
C10—C5—C6—C71.4 (5)C21—N4—C17—C17ii179.8 (4)
C4—C5—C6—C7177.7 (3)N4—C17—C18—C191.0 (7)
C5—C6—C7—F1174.1 (3)C17ii—C17—C18—C19179.4 (5)
C5—C6—C7—C84.3 (5)C17—C18—C19—C200.3 (8)
C13—N2—C8—C94.2 (5)C18—C19—C20—C211.1 (8)
C16—N2—C8—C9131.6 (4)C17—N4—C21—C201.4 (7)
C13—N2—C8—C7171.9 (3)C19—C20—C21—N42.0 (8)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3iii0.862.232.725 (4)117
N3—H3A···O3W0.862.542.992 (4)114
O2W—H2WB···O2Wiv0.851.972.789 (5)163
O3W—H3WA···O3Wv0.78 (2)2.03 (2)2.781 (6)162 (6)
O3W—H3WB···N30.75 (2)2.32 (4)2.992 (4)149 (5)
O1W—H1WA···N40.86 (2)1.96 (2)2.813 (4)168 (5)
O1W—H1WB···O2W0.84 (2)2.24 (3)3.050 (4)162 (5)
O2W—H2WA···O1W0.73 (2)2.65 (4)3.050 (4)117 (4)
Symmetry codes: (iii) x1, y1, z; (iv) x, y+1, z+1; (v) x1, y1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2O
Mr955.87
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.5179 (4), 11.4645 (2), 11.6617 (2)
α, β, γ (°)118.844 (1), 93.398 (2), 97.258 (2)
V3)1095.06 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.38 × 0.18 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13676, 3856, 3208
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.199, 1.07
No. of reflections3856
No. of parameters310
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.862.232.725 (4)116.6
N3—H3A···O3W0.862.542.992 (4)113.7
O2W—H2WB···O2Wii0.851.972.789 (5)162.8
O3W—H3WA···O3Wiii0.784 (19)2.03 (2)2.781 (6)162 (6)
O3W—H3WB···N30.754 (19)2.32 (4)2.992 (4)149 (5)
O1W—H1WA···N40.863 (19)1.96 (2)2.813 (4)168 (5)
O1W—H1WB···O2W0.842 (19)2.24 (3)3.050 (4)162 (5)
O2W—H2WA···O1W0.730 (17)2.65 (4)3.050 (4)117 (4)
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z+1; (iii) x1, y1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China for financial support (grant No. Y407301).

References

First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res. 31, 1349–1357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds