organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,1′-(Heptane-1,7-diyldi­oxy­di­nitrilo)di­ethyl­­idyne]di-1-naphthol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 11 June 2009; accepted 13 June 2009; online 20 June 2009)

The mol­ecule of the title compound, C31H34N2O4, adopts an L-shaped configuration, in which the naphthalene units are approximately perpendicular, making a dihedral angle of 87.89 (3)°. Intramolecular H-bonds are formed between the OH substituents and the N atoms at each end of the molecule. In the crystal structure, each mol­ecule links six other mol­ecules into an infinite three-dimensional network supra­molecular structure, which is built from one-dimensional zigzag chains via weak C—H⋯π stacking and inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the potential medical applications of Schiff base compounds, see: Huang et al. (2002[Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.]). For the properties of Salen-type bis­oxime compounds, see: Darensbourg et al. (2004[Darensbourg, D. J., Mackiewicz, R. M., Rodgers, J. L. & Phelps, A. L. (2004). Inorg. Chem. 43, 1831-1833.]); Dong et al. (2008a[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008a). Acta Cryst. E64, o1405.],b[Dong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Zhang et al. (2007[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535-m536.]).

[Scheme 1]

Experimental

Crystal data
  • C31H34N2O4

  • Mr = 498.60

  • Monoclinic, C c

  • a = 11.1670 (12) Å

  • b = 30.992 (3) Å

  • c = 8.0562 (10) Å

  • β = 106.999 (2)°

  • V = 2666.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.43 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.987

  • 6926 measured reflections

  • 2351 independent reflections

  • 1294 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.04

  • 2351 reflections

  • 334 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.81 2.530 (5) 146
O4—H4⋯N2 0.82 1.80 2.514 (7) 145
C30—H30⋯O3i 0.93 2.69 3.598 (8) 165
C20—H20A⋯O1ii 0.96 2.66 3.572 (7) 159
C29—H29⋯Cg1iii 0.93 3.40 4.161 (1) 141
C20—H20BCg2iv 0.96 3.54 4.203 (1) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x-1, y, z. Cg1 and Cg2 are centroids of the C10–C15 and C14–C19 rings.

Data collection: SMART (Bruker, 1996[Bruker (1996). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of Schiff-base compound and its analogues has received long-lasting research interest not only because of their appealing structural and topological novelty but also due to their potential medical value derived from their antiviral and the inhibition of angiogenesis (Huang et al., 2002). Salen-type bisoxime compound and its derivatives are among the design production of Schiff-base compounds, which show remarkable stability and especial electronic, bioactive and chemical properties useful for asymmetric catalysis (Darensbourg et al., 2004), for biological chemistry (Karthikeyan et al., 2006) and also for optical materials (Zhang et al., 2007). As an extension of our work (Dong et al., 2008a; Dong et al., 2008b) on the structural characterization of salen-type bisoxime compounds, here report the synthesis and structure of the title compound (Fig. 1).

The molecule of the title compound adopts an L-shaped configuration, in which the dihedral angle between the plane of oxime functional groups and naphthalene ring is about 8.01° for C22—C33 ring and O2—N2—C21, 1.15° for C10—C19 ring and O1—N1—C9, respectively. And the naphthalene units are approximately vertical with the dihedral angle of 87.89°. The two intramolecular hydrogen bonds, O3—H3···N1 and O4—H4···N2, generate S(6) ring motifs helping to the stabilization of the title molecule (Fig. 2).

This structure can be recognized as a three-dimensional network building from some different direction one-dimensional zigzag chains (Fig. 3). The zigzag chain can be isolated from the three-dimensional network, which is linked via an intermolecular C29—H29···π interactions involving the aromatic ring C14—C19 (centroid, Cg1), and C30—H30···O3 hydrogen bonds between the phenolic-oxygen atom and the hydrogen atom of the naphthalene ring. The neighbouring opposite direction zigzag chains are linked by the other intermolecular hydrogen bonds C20—H20A···O1 between the oxime oxygen atom and the hydrogen atom of the methyl substitute of oxime group. But the adjacent parallel direction zigzag chains are holed by intermolecular C20—H20B···π interactions involving the naphthalene ring C22—C32 (centroid, Cg2). All in all, every L-shaped title compound molecule links six other molecules into an infinite three-dimensional network supramolecular structure due to head-to-arm weak C—H···π stacking and intermolecular hydrogen bonds (Fig. 2, 3).

Related literature top

For the the potential medical applications of Schiff base compounds, see: Huang et al. (2002). For the properties of Salen-type bisoxime compounds, see: Darensbourg et al. (2004); Dong et al. (2008a,b); Karthikeyan et al. (2006); Zhang et al. (2007). Cg1 and Cg2 are centroids of the C10–C15 and C14–C19 rings.

Experimental top

2,2'-[(Heptane-1,7-diyldioxy)bis(nitriloethylidyne)]dinaphthol was synthesized according to an analogous method reported earlier (Dong et al., 2008b). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (360.7 mg, 1.94 mmol) was added dropwise an ethanol solution (3 ml) of 1,7-bis(aminooxy)heptane (155.5 mg, 0.96 mmol). The mixture solution was stirred at 328–333 K for 72 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 369.0 mg (Yield, 77.1%) of powder; m.p. 388.5–390.5 K. Colourless block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a mixed solution of dichloromethane/ethanol (1:1) of 2,2'-[(heptane-1,7-diyldioxy)bis(nitriloethylidyne)]dinaphthol at room temperature for about six weeks. Analysis calculated for C31H34N2O4: C 74.67, H 6.87, N 5.62%. Found: C 74.63, H 6.93, N 5.60%.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), C—H = 0.96 (CH3), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound. Weak C—H···π interaction, intra- and intermolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of the three-dimensional network for the title compound. The hydrogen atoms are omitted for clarity.
2,2'-[1,1'-(Heptane-1,7-diyldioxydinitrilo)diethylidyne]di-1-naphthol top
Crystal data top
C31H34N2O4F(000) = 1064
Mr = 498.60Dx = 1.242 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1335 reflections
a = 11.1670 (12) Åθ = 2.6–20.4°
b = 30.992 (3) ŵ = 0.08 mm1
c = 8.0562 (10) ÅT = 298 K
β = 106.999 (2)°Needle-shaped, colourless
V = 2666.4 (5) Å30.43 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2351 independent reflections
Radiation source: fine-focus sealed tube1294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.966, Tmax = 0.987k = 3626
6926 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C31H34N2O4V = 2666.4 (5) Å3
Mr = 498.60Z = 4
Monoclinic, CcMo Kα radiation
a = 11.1670 (12) ŵ = 0.08 mm1
b = 30.992 (3) ÅT = 298 K
c = 8.0562 (10) Å0.43 × 0.18 × 0.16 mm
β = 106.999 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1294 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.987Rint = 0.055
6926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
2351 reflectionsΔρmin = 0.15 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5072 (4)0.01344 (13)0.4193 (6)0.0563 (12)
N20.3241 (4)0.34282 (14)0.1038 (7)0.0672 (14)
O10.5541 (3)0.02813 (10)0.4627 (5)0.0638 (11)
O20.2551 (4)0.33008 (11)0.2159 (6)0.0829 (14)
O30.3391 (3)0.06591 (10)0.2602 (5)0.0653 (11)
H30.37080.04220.28930.098*
O40.4023 (4)0.32932 (10)0.1543 (6)0.0712 (12)
H40.36720.32340.08090.107*
C10.4564 (5)0.05779 (15)0.3800 (8)0.0613 (15)
H1A0.38400.05290.42100.074*
H1B0.43140.05330.25540.074*
C20.5032 (5)0.10340 (15)0.4216 (8)0.0545 (14)
H2A0.57810.10780.38580.065*
H2B0.52450.10830.54580.065*
C30.4027 (5)0.13488 (14)0.3276 (8)0.0603 (15)
H3A0.38480.13000.20380.072*
H3B0.32690.12850.35850.072*
C40.4333 (5)0.18204 (15)0.3637 (8)0.0581 (15)
H4A0.45310.18720.48750.070*
H4B0.50680.18920.32830.070*
C50.3270 (5)0.21085 (15)0.2698 (7)0.0617 (16)
H5A0.25500.20400.30930.074*
H5B0.30490.20410.14700.074*
C60.3514 (6)0.25888 (16)0.2920 (9)0.0715 (17)
H6A0.37620.26600.41450.086*
H6B0.41970.26660.24600.086*
C70.2364 (6)0.28434 (16)0.1993 (10)0.079 (2)
H7A0.21160.27680.07720.095*
H7B0.16850.27640.24560.095*
C80.7100 (5)0.03440 (16)0.6125 (9)0.081 (2)
H8A0.73850.00710.58240.121*
H8B0.76720.05670.60220.121*
H8C0.70610.03330.72990.121*
C90.5832 (5)0.04386 (16)0.4933 (7)0.0504 (13)
C100.4203 (4)0.09722 (15)0.3404 (7)0.0473 (13)
C110.5372 (4)0.08821 (15)0.4514 (7)0.0477 (14)
C120.6146 (5)0.12319 (17)0.5284 (8)0.0590 (15)
H120.69400.11780.60330.071*
C130.5745 (5)0.16512 (16)0.4945 (8)0.0606 (16)
H130.62720.18760.54640.073*
C140.4557 (5)0.17435 (15)0.3833 (7)0.0503 (14)
C150.3764 (4)0.14046 (15)0.3028 (7)0.0473 (13)
C160.2572 (5)0.14951 (17)0.1906 (8)0.0631 (15)
H160.20500.12710.13600.076*
C170.2182 (6)0.1910 (2)0.1617 (9)0.0742 (18)
H170.13830.19690.08930.089*
C180.2957 (6)0.22464 (19)0.2384 (9)0.078 (2)
H180.26720.25290.21620.093*
C190.4118 (6)0.21739 (15)0.3449 (8)0.0645 (16)
H190.46320.24050.39330.077*
C200.3147 (5)0.41367 (17)0.2330 (8)0.0735 (18)
H20A0.26080.43560.16630.110*
H20B0.38810.42690.30900.110*
H20C0.27100.39810.30050.110*
C210.3522 (4)0.38312 (17)0.1130 (8)0.0563 (15)
C220.4417 (5)0.37085 (14)0.1341 (8)0.0536 (15)
C230.4214 (5)0.39749 (16)0.0081 (8)0.0568 (15)
C240.4688 (5)0.44061 (15)0.0014 (9)0.0667 (17)
H240.45550.45920.08500.080*
C250.5314 (5)0.45511 (19)0.1051 (9)0.0721 (19)
H250.56200.48320.09310.087*
C260.5518 (5)0.4283 (2)0.2361 (9)0.0665 (16)
C270.5071 (4)0.38519 (17)0.2497 (8)0.0561 (15)
C280.5259 (5)0.35823 (19)0.3813 (9)0.0729 (17)
H280.49460.33020.39310.088*
C290.5895 (6)0.3728 (2)0.4915 (10)0.084 (2)
H290.60240.35480.57690.101*
C300.6349 (5)0.4149 (3)0.4751 (10)0.086 (2)
H300.67870.42460.54990.103*
C310.6171 (5)0.4419 (2)0.3538 (10)0.077 (2)
H310.64810.46990.34690.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (3)0.038 (3)0.063 (3)0.003 (2)0.008 (2)0.002 (2)
N20.073 (3)0.042 (3)0.087 (4)0.006 (2)0.025 (3)0.009 (3)
O10.060 (2)0.038 (2)0.084 (3)0.0017 (17)0.007 (2)0.0032 (19)
O20.101 (3)0.043 (3)0.120 (4)0.012 (2)0.056 (3)0.015 (2)
O30.059 (2)0.045 (2)0.080 (3)0.0047 (18)0.002 (2)0.0083 (19)
O40.083 (3)0.040 (2)0.087 (3)0.004 (2)0.021 (2)0.004 (2)
C10.066 (3)0.044 (3)0.070 (4)0.010 (3)0.014 (3)0.004 (3)
C20.062 (3)0.039 (3)0.059 (4)0.000 (2)0.012 (3)0.001 (3)
C30.071 (4)0.039 (3)0.066 (4)0.001 (3)0.013 (3)0.002 (3)
C40.068 (3)0.042 (3)0.065 (4)0.006 (3)0.020 (3)0.000 (3)
C50.069 (3)0.047 (3)0.069 (5)0.003 (3)0.018 (3)0.002 (3)
C60.089 (4)0.042 (3)0.085 (5)0.002 (3)0.027 (4)0.006 (3)
C70.085 (4)0.042 (3)0.119 (6)0.007 (3)0.043 (4)0.012 (4)
C80.064 (4)0.054 (4)0.101 (6)0.001 (3)0.013 (4)0.002 (3)
C90.050 (3)0.044 (3)0.054 (4)0.000 (3)0.011 (3)0.004 (3)
C100.049 (3)0.045 (3)0.048 (4)0.008 (2)0.014 (3)0.006 (3)
C110.044 (3)0.037 (3)0.061 (4)0.004 (2)0.014 (3)0.003 (3)
C120.053 (3)0.047 (3)0.070 (4)0.005 (3)0.006 (3)0.001 (3)
C130.064 (4)0.047 (4)0.069 (4)0.018 (3)0.016 (3)0.004 (3)
C140.058 (3)0.041 (3)0.052 (4)0.001 (3)0.017 (3)0.001 (3)
C150.049 (3)0.044 (3)0.050 (4)0.001 (3)0.015 (3)0.002 (3)
C160.058 (3)0.052 (3)0.075 (4)0.005 (3)0.013 (3)0.003 (3)
C170.069 (4)0.063 (4)0.080 (5)0.018 (3)0.005 (4)0.009 (4)
C180.097 (5)0.048 (4)0.089 (6)0.017 (3)0.028 (5)0.013 (4)
C190.088 (4)0.039 (3)0.066 (5)0.004 (3)0.022 (4)0.002 (3)
C200.079 (4)0.055 (4)0.082 (5)0.017 (3)0.015 (4)0.003 (3)
C210.054 (3)0.040 (3)0.066 (4)0.012 (2)0.002 (3)0.007 (3)
C220.053 (3)0.034 (3)0.064 (4)0.007 (2)0.001 (3)0.004 (3)
C230.055 (3)0.037 (3)0.069 (4)0.005 (2)0.004 (3)0.002 (3)
C240.075 (4)0.035 (3)0.077 (5)0.000 (3)0.001 (4)0.007 (3)
C250.076 (4)0.046 (4)0.086 (6)0.013 (3)0.010 (4)0.004 (4)
C260.054 (3)0.066 (4)0.070 (5)0.001 (3)0.002 (3)0.020 (3)
C270.046 (3)0.051 (4)0.061 (4)0.006 (3)0.000 (3)0.004 (3)
C280.066 (4)0.072 (4)0.073 (5)0.013 (3)0.009 (4)0.002 (4)
C290.069 (4)0.094 (6)0.083 (6)0.014 (4)0.013 (4)0.003 (4)
C300.060 (4)0.105 (6)0.090 (6)0.016 (4)0.018 (4)0.031 (5)
C310.059 (4)0.082 (5)0.084 (6)0.002 (3)0.010 (4)0.008 (4)
Geometric parameters (Å, º) top
N1—C91.292 (6)C11—C121.412 (7)
N1—O11.396 (5)C12—C131.376 (7)
N2—C211.285 (6)C12—H120.9300
N2—O21.404 (6)C13—C141.396 (7)
O1—C11.433 (6)C13—H130.9300
O2—C71.433 (6)C14—C151.405 (6)
O3—C101.356 (5)C14—C191.424 (7)
O3—H30.8200C15—C161.401 (7)
O4—C221.355 (5)C16—C171.357 (7)
O4—H40.8200C16—H160.9300
C1—C21.511 (6)C17—C181.379 (8)
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C18—C191.348 (9)
C2—C31.513 (7)C18—H180.9300
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C20—C211.498 (7)
C3—C41.510 (6)C20—H20A0.9600
C3—H3A0.9700C20—H20B0.9600
C3—H3B0.9700C20—H20C0.9600
C4—C51.501 (7)C21—C231.479 (7)
C4—H4A0.9700C22—C231.378 (7)
C4—H4B0.9700C22—C271.412 (7)
C5—C61.515 (7)C23—C241.431 (6)
C5—H5A0.9700C24—C251.333 (8)
C5—H5B0.9700C24—H240.9300
C6—C71.506 (8)C25—C261.414 (8)
C6—H6A0.9700C25—H250.9300
C6—H6B0.9700C26—C271.418 (7)
C7—H7A0.9700C26—C311.420 (8)
C7—H7B0.9700C27—C281.413 (8)
C8—C91.489 (7)C28—C291.366 (8)
C8—H8A0.9600C28—H280.9300
C8—H8B0.9600C29—C301.390 (8)
C8—H8C0.9600C29—H290.9300
C9—C111.472 (6)C30—C311.345 (9)
C10—C111.377 (6)C30—H300.9300
C10—C151.429 (6)C31—H310.9300
C9—N1—O1114.2 (4)C13—C12—C11121.1 (5)
C21—N2—O2114.0 (4)C13—C12—H12119.5
N1—O1—C1107.2 (4)C11—C12—H12119.5
N2—O2—C7108.1 (4)C12—C13—C14120.9 (5)
C10—O3—H3109.5C12—C13—H13119.5
C22—O4—H4109.5C14—C13—H13119.5
O1—C1—C2109.3 (4)C13—C14—C15119.7 (4)
O1—C1—H1A109.8C13—C14—C19122.3 (5)
C2—C1—H1A109.8C15—C14—C19118.0 (5)
O1—C1—H1B109.8C16—C15—C14120.0 (4)
C2—C1—H1B109.8C16—C15—C10121.8 (4)
H1A—C1—H1B108.3C14—C15—C10118.2 (4)
C1—C2—C3109.5 (4)C17—C16—C15119.8 (5)
C1—C2—H2A109.8C17—C16—H16120.1
C3—C2—H2A109.8C15—C16—H16120.1
C1—C2—H2B109.8C16—C17—C18120.8 (6)
C3—C2—H2B109.8C16—C17—H17119.6
H2A—C2—H2B108.2C18—C17—H17119.6
C4—C3—C2115.8 (4)C19—C18—C17121.3 (5)
C4—C3—H3A108.3C19—C18—H18119.3
C2—C3—H3A108.3C17—C18—H18119.3
C4—C3—H3B108.3C18—C19—C14120.1 (5)
C2—C3—H3B108.3C18—C19—H19120.0
H3A—C3—H3B107.4C14—C19—H19120.0
C5—C4—C3112.2 (4)C21—C20—H20A109.5
C5—C4—H4A109.2C21—C20—H20B109.5
C3—C4—H4A109.2H20A—C20—H20B109.5
C5—C4—H4B109.2C21—C20—H20C109.5
C3—C4—H4B109.2H20A—C20—H20C109.5
H4A—C4—H4B107.9H20B—C20—H20C109.5
C4—C5—C6115.9 (5)N2—C21—C23114.9 (5)
C4—C5—H5A108.3N2—C21—C20122.8 (5)
C6—C5—H5A108.3C23—C21—C20122.3 (5)
C4—C5—H5B108.3O4—C22—C23122.7 (5)
C6—C5—H5B108.3O4—C22—C27115.6 (5)
H5A—C5—H5B107.4C23—C22—C27121.7 (5)
C7—C6—C5111.0 (5)C22—C23—C24117.4 (5)
C7—C6—H6A109.4C22—C23—C21122.4 (5)
C5—C6—H6A109.4C24—C23—C21120.2 (5)
C7—C6—H6B109.4C25—C24—C23122.4 (6)
C5—C6—H6B109.4C25—C24—H24118.8
H6A—C6—H6B108.0C23—C24—H24118.8
O2—C7—C6113.1 (5)C24—C25—C26120.7 (6)
O2—C7—H7A109.0C24—C25—H25119.6
C6—C7—H7A109.0C26—C25—H25119.6
O2—C7—H7B109.0C25—C26—C27118.8 (6)
C6—C7—H7B109.0C25—C26—C31123.3 (6)
H7A—C7—H7B107.8C27—C26—C31117.8 (7)
C9—C8—H8A109.5C22—C27—C28121.8 (5)
C9—C8—H8B109.5C22—C27—C26118.9 (6)
H8A—C8—H8B109.5C28—C27—C26119.2 (6)
C9—C8—H8C109.5C29—C28—C27120.8 (6)
H8A—C8—H8C109.5C29—C28—H28119.6
H8B—C8—H8C109.5C27—C28—H28119.6
N1—C9—C11115.9 (4)C28—C29—C30119.5 (7)
N1—C9—C8121.8 (5)C28—C29—H29120.2
C11—C9—C8122.3 (4)C30—C29—H29120.2
O3—C10—C11122.6 (4)C31—C30—C29121.7 (7)
O3—C10—C15115.4 (4)C31—C30—H30119.1
C11—C10—C15122.0 (4)C29—C30—H30119.1
C10—C11—C12118.1 (4)C30—C31—C26120.9 (7)
C10—C11—C9122.6 (4)C30—C31—H31119.5
C12—C11—C9119.2 (4)C26—C31—H31119.5
C9—N1—O1—C1176.2 (5)C15—C16—C17—C181.5 (10)
C21—N2—O2—C7176.8 (5)C16—C17—C18—C190.4 (11)
N1—O1—C1—C2179.4 (4)C17—C18—C19—C141.4 (10)
O1—C1—C2—C3177.3 (5)C13—C14—C19—C18179.1 (6)
C1—C2—C3—C4177.0 (5)C15—C14—C19—C182.0 (8)
C2—C3—C4—C5178.1 (5)O2—N2—C21—C23178.1 (4)
C3—C4—C5—C6177.4 (5)O2—N2—C21—C200.0 (7)
C4—C5—C6—C7177.3 (5)O4—C22—C23—C24179.3 (4)
N2—O2—C7—C676.5 (7)C27—C22—C23—C240.2 (7)
C5—C6—C7—O2179.8 (5)O4—C22—C23—C211.4 (8)
O1—N1—C9—C11179.8 (4)C27—C22—C23—C21179.5 (4)
O1—N1—C9—C80.7 (7)N2—C21—C23—C226.9 (7)
O3—C10—C11—C12180.0 (5)C20—C21—C23—C22171.2 (5)
C15—C10—C11—C120.3 (8)N2—C21—C23—C24173.8 (5)
O3—C10—C11—C90.5 (8)C20—C21—C23—C248.0 (7)
C15—C10—C11—C9179.2 (5)C22—C23—C24—C250.5 (7)
N1—C9—C11—C100.1 (8)C21—C23—C24—C25179.8 (5)
C8—C9—C11—C10179.6 (6)C23—C24—C25—C261.2 (9)
N1—C9—C11—C12179.5 (5)C24—C25—C26—C271.5 (8)
C8—C9—C11—C121.0 (8)C24—C25—C26—C31179.7 (5)
C10—C11—C12—C130.3 (8)O4—C22—C27—C282.2 (7)
C9—C11—C12—C13179.2 (5)C23—C22—C27—C28178.7 (5)
C11—C12—C13—C140.2 (9)O4—C22—C27—C26179.7 (4)
C12—C13—C14—C150.8 (8)C23—C22—C27—C260.6 (7)
C12—C13—C14—C19179.7 (5)C25—C26—C27—C221.2 (7)
C13—C14—C15—C16179.8 (6)C31—C26—C27—C22179.9 (5)
C19—C14—C15—C160.9 (7)C25—C26—C27—C28179.4 (5)
C13—C14—C15—C100.8 (7)C31—C26—C27—C281.8 (7)
C19—C14—C15—C10179.8 (5)C22—C27—C28—C29180.0 (5)
O3—C10—C15—C160.1 (7)C26—C27—C28—C291.9 (8)
C11—C10—C15—C16179.7 (5)C27—C28—C29—C300.8 (9)
O3—C10—C15—C14179.4 (4)C28—C29—C30—C310.5 (10)
C11—C10—C15—C140.3 (7)C29—C30—C31—C260.6 (9)
C14—C15—C16—C170.8 (8)C25—C26—C31—C30179.4 (6)
C10—C15—C16—C17178.5 (6)C27—C26—C31—C300.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.812.530 (5)146
O4—H4···N20.821.802.514 (7)145
C30—H30···O3i0.932.693.598 (8)165
C20—H20A···O1ii0.962.663.572 (7)159
C29—H29···Cg1iii0.933.404.161 (1)141
C20—H20B···Cg2iv0.963.544.203 (1)128
Symmetry codes: (i) x+1/2, y+1/2, z1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC31H34N2O4
Mr498.60
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)11.1670 (12), 30.992 (3), 8.0562 (10)
β (°) 106.999 (2)
V3)2666.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6926, 2351, 1294
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.04
No. of reflections2351
No. of parameters334
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.812.530 (5)145.7
O4—H4···N20.821.802.514 (7)145.3
C30—H30···O3i0.932.693.598 (8)165.4
C20—H20A···O1ii0.962.663.572 (7)158.9
C29—H29···Cg1iii0.9293.3994.161 (1)141
C20—H20B···Cg2iv0.9603.5444.203 (1)128
Symmetry codes: (i) x+1/2, y+1/2, z1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x1, y, z.
 

Acknowledgements

The authors acknowledge finanical support from the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationBruker (1996). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Mackiewicz, R. M., Rodgers, J. L. & Phelps, A. L. (2004). Inorg. Chem. 43, 1831–1833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008a). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64–66.  CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds