metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[1,1′-(Ethyl­ene­dioxy­di­nitrilo)di­ethyl­­idyne]di-1-naphtholato}copper(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 12 June 2009; accepted 15 June 2009; online 20 June 2009)

The title complex, [Cu(C26H22N2O4)], is isostructural with its Ni analogue. All intramolecular distances and angles are very similar for the two structures, whereas the packing of the molecules, including C—H⋯O and C—H⋯π interactions, are slightly different.

Related literature

For transition metal complexes with multidentate salen-type ligands, see: Akine et al. (2005[Akine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem. 44, 3270-3274.]); Dong et al. (2009a[Dong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129-1134.],b[Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). Inorg. Chim. Acta, 362, 117-124.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Ray et al. (2003[Ray, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961-965.]); Sun et al. (2008[Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.]). For the isostructural Ni complex, see: Dong et al. (2009c[Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst. E65, m803.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C26H22N2O4)]

  • Mr = 490.00

  • Monoclinic, P 21 /n

  • a = 13.0288 (17) Å

  • b = 7.8934 (12) Å

  • c = 21.292 (2) Å

  • β = 103.217 (2)°

  • V = 2131.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.41 × 0.17 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.670, Tmax = 0.929

  • 10698 measured reflections

  • 3753 independent reflections

  • 2278 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.03

  • 3753 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.96 2.64 3.375 (5) 134
C23—H23⋯O2ii 0.93 2.43 3.261 (5) 149
C4—H4CCg8i 0.96 2.68 3.564 (6) 153
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg8 is the centroid of the C21–C26 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with multidentate salen-type ligands are very interesting in modern coordination chemistry because they have mono-, di- or tri-nuclear metal complexes with important stereochemistry (Katsuki et al., 1995; Akine et al., 2005; Dong et al., 2009b). Metal derivatives of salen-type compounds have been investigated extensively, and copper(II) complexes play a major role in both synthetic and structural research (Ray et al., 2003; Dong et al., 2009a).

In this paper, a new mononuclear copper(II) complex with salen-type bisoxime chelating ligand, 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol, has been synthesized (Sun et al., 2008). The X-ray crystallography of the title complex (Fig. 1) reveals the complex crystallizes in the monoclinic system, with P21/c space group. There is a crystallographic twofold screw axis (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). The dihedral angle between the coordination plane of O3—Cu1—N1 and that of O4—Cu1—N2 is 26.53°, indicating slight distortion toward tetrahedral geometry from the square planar structure [Cu1—O3: 1.876 (3) Å; Cu1—O4: 1.895 (3) Å; Cu1—N1: 1.976 (3) Å; Cu1—N2: 1.947 (3) Å]), with a mean deviation of 0.016 Å from the N2O2 plane. The crystal structure is further stabilized by intermolecular C16—H16A···O3, C23—H23···O2 hydrogen bonds and C4—H4C···π interactions (Table 1), which link neighbouring molecules into extended chains along the c axis.

Related literature top

For transition metal complexes with multidentate salen-type ligands, see: Akine et al. (2005); Dong et al. (2009a,b); Katsuki (1995); Ray et al. (2003); Sun et al. (2008). For the isostructural Ni complex, see: Dong et al. (2009c). Cg8 is the centroid of the C21–C26 ring.

Experimental top

A solution of Cu(II) acetate monohydrate (1.7 mg, 0.0085 mmol) in ethanol (5 ml) was added dropwise to a solution of 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (3.4 mg, 0.0079 mmol) in dichloromethane (5 ml). The colour of the mixing solution turns to brown, immediately, and was allowed to stand at room temperature for about one week, the solvent was partially evaporated and obtained dark-brown needle-like single crystals suitable for X-ray crystallographic analysis.

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), or 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(Cmethyl).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title complex possessing a crystallographic twofold screw axis passing through the middle point of (–O)–H2C—CH2–(O–) unit (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
{2,2'-[1,1'-(Ethylenedioxydinitrilo)diethylidyne]di-1-naphtholato}copper(II) top
Crystal data top
[Cu(C26H22N2O4)]F(000) = 1012
Mr = 490.00Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2535 reflections
a = 13.0288 (17) Åθ = 3.0–25.3°
b = 7.8934 (12) ŵ = 1.06 mm1
c = 21.292 (2) ÅT = 298 K
β = 103.217 (2)°Needle, dark-brown
V = 2131.7 (5) Å30.41 × 0.17 × 0.07 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3753 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1513
Tmin = 0.670, Tmax = 0.929k = 99
10698 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0328P)2 + 2.0905P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C26H22N2O4)]V = 2131.7 (5) Å3
Mr = 490.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0288 (17) ŵ = 1.06 mm1
b = 7.8934 (12) ÅT = 298 K
c = 21.292 (2) Å0.41 × 0.17 × 0.07 mm
β = 103.217 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2278 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.929Rint = 0.051
10698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3753 reflectionsΔρmin = 0.41 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73155 (4)0.18038 (7)0.77719 (2)0.04608 (19)
N10.7004 (3)0.1798 (4)0.86373 (14)0.0465 (9)
N20.8811 (2)0.2362 (4)0.79867 (15)0.0452 (9)
O10.7720 (2)0.1113 (4)0.91807 (14)0.0680 (9)
O20.9266 (2)0.2769 (4)0.86424 (13)0.0512 (8)
O30.5864 (2)0.1927 (4)0.74053 (12)0.0555 (8)
O40.7494 (2)0.0995 (4)0.69654 (13)0.0562 (8)
C10.8537 (4)0.0179 (6)0.9005 (2)0.0689 (14)
H1A0.82890.02660.85720.083*
H1B0.87300.07720.92970.083*
C20.9486 (3)0.1269 (6)0.9028 (2)0.0637 (13)
H2A0.97790.15940.94720.076*
H2B1.00150.06100.88820.076*
C30.6172 (3)0.2413 (5)0.87978 (19)0.0465 (11)
C40.6114 (4)0.2381 (7)0.94956 (19)0.0661 (14)
H4A0.64530.13760.96970.099*
H4B0.53890.23840.95230.099*
H4C0.64630.33620.97110.099*
C50.5175 (3)0.2722 (5)0.76545 (19)0.0435 (10)
C60.5294 (3)0.3069 (5)0.83128 (19)0.0447 (10)
C70.4498 (4)0.4048 (6)0.8504 (2)0.0572 (12)
H70.45810.43160.89380.069*
C80.3623 (4)0.4603 (6)0.8078 (2)0.0622 (13)
H80.31290.52480.82250.075*
C90.3450 (3)0.4223 (6)0.7418 (2)0.0532 (12)
C100.4212 (3)0.3260 (5)0.7203 (2)0.0466 (10)
C110.4048 (3)0.2850 (6)0.6547 (2)0.0553 (12)
H110.45460.22030.64040.066*
C120.3158 (4)0.3395 (7)0.6113 (2)0.0737 (15)
H120.30540.31090.56790.088*
C130.2418 (4)0.4369 (7)0.6322 (3)0.0781 (16)
H130.18190.47390.60270.094*
C140.2557 (4)0.4787 (6)0.6952 (3)0.0694 (14)
H140.20570.54580.70820.083*
C150.9430 (3)0.2702 (5)0.7603 (2)0.0441 (10)
C161.0539 (3)0.3300 (6)0.7877 (2)0.0596 (12)
H16A1.05320.44900.79690.089*
H16B1.09610.31030.75690.089*
H16C1.08310.26900.82660.089*
C170.8113 (3)0.1659 (5)0.66393 (18)0.0388 (10)
C180.9056 (3)0.2506 (5)0.69117 (19)0.0418 (10)
C190.9665 (3)0.3161 (6)0.6492 (2)0.0530 (11)
H191.02850.37360.66720.064*
C200.9390 (3)0.2994 (6)0.5845 (2)0.0564 (12)
H200.98190.34400.55920.068*
C210.8443 (3)0.2135 (5)0.5550 (2)0.0485 (11)
C220.7806 (3)0.1459 (5)0.59432 (19)0.0427 (10)
C230.6864 (3)0.0651 (5)0.5649 (2)0.0502 (11)
H230.64350.02130.59040.060*
C240.6560 (4)0.0493 (6)0.4991 (2)0.0613 (13)
H240.59290.00430.48020.074*
C250.7202 (4)0.1138 (7)0.4606 (2)0.0712 (15)
H250.70050.10100.41600.085*
C260.8112 (4)0.1952 (7)0.4879 (2)0.0641 (13)
H260.85240.23980.46150.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0401 (3)0.0603 (4)0.0372 (3)0.0043 (3)0.0077 (2)0.0032 (3)
N10.046 (2)0.056 (2)0.0345 (19)0.0113 (19)0.0022 (16)0.0057 (18)
N20.043 (2)0.050 (2)0.039 (2)0.0019 (17)0.0021 (16)0.0126 (17)
O10.060 (2)0.093 (3)0.0447 (19)0.0031 (19)0.0005 (16)0.0194 (18)
O20.0535 (18)0.051 (2)0.0445 (17)0.0028 (15)0.0010 (13)0.0102 (15)
O30.0415 (16)0.087 (2)0.0368 (16)0.0011 (17)0.0062 (13)0.0113 (16)
O40.0506 (18)0.077 (2)0.0449 (17)0.0232 (16)0.0196 (14)0.0171 (16)
C10.068 (3)0.055 (3)0.070 (3)0.002 (3)0.012 (3)0.018 (3)
C20.056 (3)0.064 (3)0.062 (3)0.013 (3)0.005 (2)0.002 (3)
C30.052 (3)0.051 (3)0.037 (2)0.019 (2)0.011 (2)0.000 (2)
C40.068 (3)0.093 (4)0.039 (3)0.018 (3)0.015 (2)0.002 (3)
C50.041 (2)0.046 (3)0.044 (2)0.015 (2)0.011 (2)0.001 (2)
C60.047 (2)0.048 (3)0.041 (2)0.010 (2)0.015 (2)0.005 (2)
C70.066 (3)0.060 (3)0.051 (3)0.016 (3)0.025 (3)0.005 (2)
C80.058 (3)0.051 (3)0.085 (4)0.007 (3)0.032 (3)0.006 (3)
C90.045 (3)0.043 (3)0.073 (3)0.011 (2)0.017 (2)0.007 (3)
C100.041 (2)0.047 (3)0.051 (3)0.013 (2)0.008 (2)0.004 (2)
C110.044 (3)0.060 (3)0.059 (3)0.012 (2)0.005 (2)0.006 (2)
C120.058 (3)0.090 (4)0.063 (3)0.021 (3)0.008 (3)0.018 (3)
C130.048 (3)0.075 (4)0.100 (5)0.006 (3)0.006 (3)0.028 (4)
C140.045 (3)0.057 (3)0.106 (4)0.003 (2)0.016 (3)0.011 (3)
C150.039 (2)0.037 (3)0.056 (3)0.0032 (19)0.008 (2)0.009 (2)
C160.043 (3)0.062 (3)0.070 (3)0.004 (2)0.006 (2)0.008 (3)
C170.033 (2)0.040 (3)0.045 (2)0.0005 (19)0.0113 (18)0.006 (2)
C180.039 (2)0.042 (3)0.045 (2)0.002 (2)0.0125 (19)0.003 (2)
C190.043 (2)0.052 (3)0.066 (3)0.004 (2)0.017 (2)0.001 (3)
C200.057 (3)0.062 (3)0.057 (3)0.001 (3)0.026 (2)0.004 (3)
C210.051 (3)0.051 (3)0.046 (3)0.009 (2)0.013 (2)0.006 (2)
C220.044 (2)0.044 (3)0.041 (2)0.006 (2)0.0108 (19)0.001 (2)
C230.049 (3)0.050 (3)0.050 (3)0.001 (2)0.010 (2)0.002 (2)
C240.055 (3)0.077 (4)0.045 (3)0.004 (3)0.004 (2)0.008 (3)
C250.072 (4)0.094 (4)0.044 (3)0.010 (3)0.005 (3)0.009 (3)
C260.066 (3)0.078 (4)0.051 (3)0.008 (3)0.019 (2)0.016 (3)
Geometric parameters (Å, º) top
Cu1—O31.876 (3)C10—C111.402 (6)
Cu1—O41.895 (3)C11—C121.376 (6)
Cu1—N21.947 (3)C11—H110.9300
Cu1—N11.976 (3)C12—C131.385 (7)
N1—C31.302 (5)C12—H120.9300
N1—O11.417 (4)C13—C141.352 (7)
N2—C151.301 (5)C13—H130.9300
N2—O21.423 (4)C14—H140.9300
O1—C11.414 (5)C15—C181.449 (5)
O2—C21.432 (5)C15—C161.504 (5)
O3—C51.304 (5)C16—H16A0.9600
O4—C171.290 (4)C16—H16B0.9600
C1—C21.497 (6)C16—H16C0.9600
C1—H1A0.9700C17—C181.403 (5)
C1—H1B0.9700C17—C221.453 (5)
C2—H2A0.9700C18—C191.422 (5)
C2—H2B0.9700C19—C201.346 (6)
C3—C61.450 (6)C19—H190.9300
C3—C41.505 (5)C20—C211.421 (6)
C4—H4A0.9600C20—H200.9300
C4—H4B0.9600C21—C261.404 (6)
C4—H4C0.9600C21—C221.411 (5)
C5—C61.401 (5)C22—C231.398 (5)
C5—C101.458 (5)C23—C241.372 (5)
C6—C71.426 (6)C23—H230.9300
C7—C81.357 (6)C24—C251.394 (6)
C7—H70.9300C24—H240.9300
C8—C91.402 (6)C25—C261.357 (6)
C8—H80.9300C25—H250.9300
C9—C101.407 (6)C26—H260.9300
C9—C141.417 (6)
O3—Cu1—O487.76 (11)C11—C10—C5120.1 (4)
O3—Cu1—N2160.95 (14)C9—C10—C5120.5 (4)
O4—Cu1—N288.05 (12)C12—C11—C10120.7 (5)
O3—Cu1—N189.17 (12)C12—C11—H11119.7
O4—Cu1—N1159.73 (14)C10—C11—H11119.7
N2—Cu1—N1100.93 (13)C11—C12—C13120.0 (5)
C3—N1—O1111.1 (3)C11—C12—H12120.0
C3—N1—Cu1127.2 (3)C13—C12—H12120.0
O1—N1—Cu1121.7 (3)C14—C13—C12120.6 (5)
C15—N2—O2113.0 (3)C14—C13—H13119.7
C15—N2—Cu1129.1 (3)C12—C13—H13119.7
O2—N2—Cu1116.9 (2)C13—C14—C9121.4 (5)
C1—O1—N1112.2 (3)C13—C14—H14119.3
N2—O2—C2111.0 (3)C9—C14—H14119.3
C5—O3—Cu1125.3 (2)N2—C15—C18120.2 (4)
C17—O4—Cu1124.9 (3)N2—C15—C16120.0 (4)
O1—C1—C2110.9 (4)C18—C15—C16119.8 (4)
O1—C1—H1A109.5C15—C16—H16A109.5
C2—C1—H1A109.5C15—C16—H16B109.5
O1—C1—H1B109.5H16A—C16—H16B109.5
C2—C1—H1B109.5C15—C16—H16C109.5
H1A—C1—H1B108.0H16A—C16—H16C109.5
O2—C2—C1113.6 (3)H16B—C16—H16C109.5
O2—C2—H2A108.8O4—C17—C18124.6 (4)
C1—C2—H2A108.8O4—C17—C22116.4 (3)
O2—C2—H2B108.8C18—C17—C22118.9 (4)
C1—C2—H2B108.8C17—C18—C19118.4 (4)
H2A—C2—H2B107.7C17—C18—C15122.0 (4)
N1—C3—C6121.0 (4)C19—C18—C15119.6 (4)
N1—C3—C4119.0 (4)C20—C19—C18123.4 (4)
C6—C3—C4120.0 (4)C20—C19—H19118.3
C3—C4—H4A109.5C18—C19—H19118.3
C3—C4—H4B109.5C19—C20—C21120.0 (4)
H4A—C4—H4B109.5C19—C20—H20120.0
C3—C4—H4C109.5C21—C20—H20120.0
H4A—C4—H4C109.5C26—C21—C22118.7 (4)
H4B—C4—H4C109.5C26—C21—C20122.2 (4)
O3—C5—C6124.9 (4)C22—C21—C20119.1 (4)
O3—C5—C10116.2 (4)C23—C22—C21118.8 (4)
C6—C5—C10119.0 (4)C23—C22—C17121.0 (4)
C5—C6—C7118.0 (4)C21—C22—C17120.1 (4)
C5—C6—C3122.1 (4)C24—C23—C22121.2 (4)
C7—C6—C3119.8 (4)C24—C23—H23119.4
C8—C7—C6122.6 (4)C22—C23—H23119.4
C8—C7—H7118.7C23—C24—C25119.7 (4)
C6—C7—H7118.7C23—C24—H24120.1
C7—C8—C9121.2 (4)C25—C24—H24120.1
C7—C8—H8119.4C26—C25—C24120.3 (4)
C9—C8—H8119.4C26—C25—H25119.9
C8—C9—C10118.5 (4)C24—C25—H25119.9
C8—C9—C14123.5 (5)C25—C26—C21121.3 (4)
C10—C9—C14118.0 (5)C25—C26—H26119.3
C11—C10—C9119.4 (4)C21—C26—H26119.3
O3—Cu1—N1—C325.1 (4)C14—C9—C10—C5176.7 (4)
O4—Cu1—N1—C3106.3 (5)O3—C5—C10—C112.8 (6)
N2—Cu1—N1—C3138.7 (3)C6—C5—C10—C11176.6 (4)
O3—Cu1—N1—O1156.5 (3)O3—C5—C10—C9175.8 (4)
O4—Cu1—N1—O175.2 (5)C6—C5—C10—C94.7 (6)
N2—Cu1—N1—O139.8 (3)C9—C10—C11—C120.7 (6)
O3—Cu1—N2—C1551.8 (6)C5—C10—C11—C12178.0 (4)
O4—Cu1—N2—C1525.6 (4)C10—C11—C12—C130.5 (7)
N1—Cu1—N2—C15172.7 (4)C11—C12—C13—C140.3 (8)
O3—Cu1—N2—O2115.2 (4)C12—C13—C14—C91.1 (8)
O4—Cu1—N2—O2167.5 (3)C8—C9—C14—C13179.1 (5)
N1—Cu1—N2—O25.8 (3)C10—C9—C14—C132.2 (7)
C3—N1—O1—C1169.7 (4)O2—N2—C15—C18174.5 (3)
Cu1—N1—O1—C111.6 (4)Cu1—N2—C15—C187.2 (6)
C15—N2—O2—C2111.8 (4)O2—N2—C15—C165.5 (5)
Cu1—N2—O2—C279.2 (3)Cu1—N2—C15—C16172.9 (3)
O4—Cu1—O3—C5166.2 (3)Cu1—O4—C17—C1830.4 (5)
N2—Cu1—O3—C588.8 (5)Cu1—O4—C17—C22151.3 (3)
N1—Cu1—O3—C533.8 (3)O4—C17—C18—C19179.4 (4)
O3—Cu1—O4—C17125.2 (3)C22—C17—C18—C191.2 (6)
N2—Cu1—O4—C1736.2 (3)O4—C17—C18—C150.4 (6)
N1—Cu1—O4—C17153.3 (4)C22—C17—C18—C15177.8 (3)
N1—O1—C1—C293.8 (4)N2—C15—C18—C1712.2 (6)
N2—O2—C2—C157.3 (5)C16—C15—C18—C17167.8 (4)
O1—C1—C2—O255.4 (5)N2—C15—C18—C19168.8 (4)
O1—N1—C3—C6175.4 (3)C16—C15—C18—C1911.2 (6)
Cu1—N1—C3—C66.0 (6)C17—C18—C19—C200.9 (6)
O1—N1—C3—C42.4 (5)C15—C18—C19—C20178.1 (4)
Cu1—N1—C3—C4176.1 (3)C18—C19—C20—C210.5 (7)
Cu1—O3—C5—C624.8 (6)C19—C20—C21—C26178.9 (4)
Cu1—O3—C5—C10155.8 (3)C19—C20—C21—C220.4 (6)
O3—C5—C6—C7176.0 (4)C26—C21—C22—C230.8 (6)
C10—C5—C6—C74.6 (6)C20—C21—C22—C23178.5 (4)
O3—C5—C6—C36.4 (6)C26—C21—C22—C17178.6 (4)
C10—C5—C6—C3173.0 (4)C20—C21—C22—C170.7 (6)
N1—C3—C6—C515.5 (6)O4—C17—C22—C232.8 (6)
C4—C3—C6—C5162.4 (4)C18—C17—C22—C23178.9 (4)
N1—C3—C6—C7167.0 (4)O4—C17—C22—C21179.5 (4)
C4—C3—C6—C715.2 (6)C18—C17—C22—C211.1 (6)
C5—C6—C7—C82.0 (6)C21—C22—C23—C240.7 (6)
C3—C6—C7—C8175.6 (4)C17—C22—C23—C24178.5 (4)
C6—C7—C8—C90.6 (7)C22—C23—C24—C250.3 (7)
C7—C8—C9—C100.6 (6)C23—C24—C25—C261.4 (7)
C7—C8—C9—C14179.3 (4)C24—C25—C26—C211.4 (8)
C8—C9—C10—C11179.2 (4)C22—C21—C26—C250.3 (7)
C14—C9—C10—C112.0 (6)C20—C21—C26—C25179.5 (5)
C8—C9—C10—C52.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.962.643.375 (5)134
C23—H23···O2ii0.932.433.261 (5)149
C4—H4C···Cg8i0.962.683.564 (6)153
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C26H22N2O4)]
Mr490.00
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.0288 (17), 7.8934 (12), 21.292 (2)
β (°) 103.217 (2)
V3)2131.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.41 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
10698, 3753, 2278
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.03
No. of reflections3753
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.962.643.375 (5)133.5
C23—H23···O2ii0.932.433.261 (5)149.2
C4—H4C···Cg8i0.962.683.564 (6)153
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge finanical support from the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationAkine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem. 44, 3270–3274.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129–1134.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst. E65, m803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationRay, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961–965.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds