organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-meth­oxy­benzyl­­idene)-4-hy­droxy­benzohydrazide methanol solvate

aDepartment of Chemistry, Chifeng University, Chifeng 024001, People's Republic of China
*Correspondence e-mail: xuesong_lin@126.com

(Received 13 June 2009; accepted 15 June 2009; online 20 June 2009)

In the title hydrazone compound, C15H13BrN2O3·CH3OH, the methanol solvate is linked to the benzohydrazide molecule through O—H⋯N and O—H⋯O hydrogen bonds. The benzohydrazide mol­ecule adopts an E configuration about the C=N double bond. The mol­ecule is twisted, with a dihedral angle between the two substituted benzene rings of 35.7 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming layers parallel to the ac plane.

Related literature

For the biological properties of the hydrazone compounds, see: Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Şahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Çukurovalı et al. (2006[Çukurovalı, A., Yılmaz, I., Gür, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For the structures of hydrazone derivatives, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Wei et al. (2009[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O3·CH4O

  • Mr = 381.23

  • Orthorhombic, P b c a

  • a = 11.1886 (7) Å

  • b = 14.4464 (9) Å

  • c = 20.5927 (13) Å

  • V = 3328.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.598, Tmax = 0.636

  • 19306 measured reflections

  • 3638 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.179

  • S = 1.06

  • 3638 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.89 (4) 2.16 (5) 3.009 (4) 158 (5)
O4—H4⋯N1 0.82 2.64 3.239 (5) 131
O4—H4⋯O2 0.82 1.96 2.729 (4) 157
O3—H3⋯O4ii 0.82 1.78 2.602 (5) 175
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone and Schiff base compounds derived from the reaction of aldehydes with hydrazides have been widely investigated both for their crystal structures and biological properties (Khattab et al., 2005; Küçükgüzel et al., 2003; Çukurovalı et al., 2006). In the last few years, a large number of hydrazone derivatives have been reported (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008; Yang et al., 2008). However, the hydrazone compounds derived the 5-bromo-2-methoxybenzaldehyde have never been reported. In this paper, the crystal structure of the title new hydrazone compound, (I), derived from the reaction of 5-bromo-2-methoxybenzaldehyde and 4-hydroxybenzohydrazide, is reported.

The molecular structure of (I) is shown as Fig. 1. The compound consists of a hydrazone molecule and a methanol molecule of crystallization. The methanol molecule is linked to the hydrazone molecule through intramolecular O–H···N and O–H···O hydrogen bonds, Table 1. The hydrazone molecule adopts an E configuration about the CN double bond. The molecule is twisted, with the dihedral angle between the C1—C6 and C10—C15 benzene rings of 35.7 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds, Table 1, forming layers parallel to the ac plane, as shown in Fig. 2.

Related literature top

For the biological properties of the hydrazone compounds, see: Khattab et al. (2005); Küçükgüzel et al. (2003); Çukurovalı et al. (2006). For the structures of hydrazone derivatives, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008); Yang et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental top

5-Bromo-2-methoxybenzaldehyde (1.0 mmol, 215.0 mg) and 4-hydroxybenzohydrazide (1.0 mmol, 152.2 mg) were mixed and refluxed in methanol (50 ml). The mixture was stirred for 1 h to give a clear colourless solution. Colourless crystals of (I) were formed by slow evaporation of the solution in air for a few days.

Refinement top

H2 attached to N2 was located in a difference map and refined with N–H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically [d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å], and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen atoms not involved in hydrogen bonding have been omitted. Hydrogen bonds are shown as dashed lines.
N'-(5-Bromo-2-methoxybenzylidene)-4-hydroxybenzohydrazide methanol solvate top
Crystal data top
C15H13BrN2O3·CH4OF(000) = 1552
Mr = 381.23Dx = 1.522 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3350 reflections
a = 11.1886 (7) Åθ = 2.5–24.5°
b = 14.4464 (9) ŵ = 2.49 mm1
c = 20.5927 (13) ÅT = 298 K
V = 3328.5 (4) Å3Block, colourless
Z = 80.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.598, Tmax = 0.636k = 1815
19306 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0849P)2 + 4.4269P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.95 e Å3
1 restraintΔρmin = 0.83 e Å3
Crystal data top
C15H13BrN2O3·CH4OV = 3328.5 (4) Å3
Mr = 381.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.1886 (7) ŵ = 2.49 mm1
b = 14.4464 (9) ÅT = 298 K
c = 20.5927 (13) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3638 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2234 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.636Rint = 0.054
19306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.95 e Å3
3638 reflectionsΔρmin = 0.83 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82955 (5)0.03436 (5)0.73273 (2)0.0699 (3)
N10.7667 (3)0.1520 (3)0.48426 (15)0.0388 (8)
N20.7226 (3)0.1789 (3)0.42463 (16)0.0396 (8)
O11.1184 (3)0.1179 (3)0.49400 (17)0.0591 (9)
O20.5326 (3)0.1584 (2)0.45803 (13)0.0472 (8)
O30.4288 (3)0.2326 (3)0.16133 (13)0.0499 (9)
H30.46940.26970.14080.075*
O40.5525 (4)0.1537 (3)0.59007 (15)0.0589 (10)
H40.56570.16110.55120.088*
C10.9352 (4)0.1136 (3)0.54842 (19)0.0365 (9)
C21.0590 (4)0.0944 (3)0.5493 (2)0.0422 (10)
C31.1097 (4)0.0555 (3)0.6035 (2)0.0488 (12)
H3A1.19080.04150.60340.059*
C41.0431 (5)0.0369 (4)0.6572 (2)0.0521 (12)
H4A1.07840.01040.69360.062*
C50.9219 (4)0.0579 (3)0.6571 (2)0.0412 (10)
C60.8690 (4)0.0949 (3)0.6038 (2)0.0381 (10)
H60.78760.10780.60440.046*
C71.2442 (5)0.1054 (5)0.4918 (3)0.0724 (17)
H7A1.28040.13660.52790.109*
H7B1.27480.13070.45200.109*
H7C1.26250.04060.49390.109*
C80.8794 (4)0.1474 (3)0.48878 (19)0.0387 (10)
H80.92690.16550.45400.046*
C90.6031 (4)0.1770 (3)0.41462 (18)0.0348 (9)
C100.5622 (3)0.1963 (3)0.34754 (18)0.0324 (9)
C110.6285 (4)0.2436 (3)0.30120 (19)0.0366 (9)
H110.70310.26700.31230.044*
C120.5861 (4)0.2567 (3)0.23906 (18)0.0400 (10)
H120.63200.28820.20860.048*
C130.4747 (4)0.2226 (3)0.22221 (19)0.0373 (10)
C140.4067 (4)0.1763 (3)0.26778 (19)0.0408 (10)
H140.33200.15310.25660.049*
C150.4499 (4)0.1648 (3)0.3298 (2)0.0397 (10)
H150.40260.13510.36060.048*
H20.777 (4)0.182 (4)0.393 (2)0.080*
C160.5253 (6)0.0617 (4)0.6017 (3)0.0657 (15)
H16A0.58740.02310.58440.099*
H16B0.45080.04660.58110.099*
H16C0.51870.05160.64760.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0692 (4)0.1010 (5)0.0395 (3)0.0096 (3)0.0019 (2)0.0223 (3)
N10.039 (2)0.051 (2)0.0270 (17)0.0015 (17)0.0030 (14)0.0055 (15)
N20.037 (2)0.057 (2)0.0242 (17)0.0008 (18)0.0011 (14)0.0086 (16)
O10.0380 (18)0.086 (3)0.053 (2)0.0017 (18)0.0135 (15)0.0008 (18)
O20.0429 (17)0.071 (2)0.0277 (15)0.0026 (16)0.0035 (13)0.0088 (14)
O30.0448 (18)0.077 (2)0.0283 (15)0.0177 (17)0.0081 (13)0.0087 (15)
O40.080 (3)0.067 (2)0.0300 (16)0.007 (2)0.0109 (16)0.0003 (15)
C10.032 (2)0.045 (3)0.032 (2)0.0008 (19)0.0022 (17)0.0001 (18)
C20.036 (2)0.048 (3)0.042 (2)0.002 (2)0.0020 (19)0.006 (2)
C30.033 (2)0.057 (3)0.056 (3)0.005 (2)0.006 (2)0.003 (2)
C40.049 (3)0.059 (3)0.048 (3)0.005 (2)0.014 (2)0.008 (2)
C50.044 (3)0.043 (3)0.037 (2)0.006 (2)0.0039 (19)0.0031 (19)
C60.031 (2)0.048 (3)0.035 (2)0.0042 (19)0.0032 (17)0.0042 (19)
C70.040 (3)0.086 (4)0.091 (4)0.002 (3)0.022 (3)0.005 (4)
C80.037 (2)0.049 (3)0.030 (2)0.002 (2)0.0032 (17)0.0052 (18)
C90.037 (2)0.041 (2)0.0264 (19)0.0014 (19)0.0022 (16)0.0027 (17)
C100.032 (2)0.039 (2)0.0266 (19)0.0022 (18)0.0013 (16)0.0025 (16)
C110.032 (2)0.049 (3)0.029 (2)0.0019 (19)0.0015 (16)0.0012 (19)
C120.036 (2)0.058 (3)0.026 (2)0.008 (2)0.0002 (17)0.0042 (18)
C130.037 (2)0.048 (3)0.0275 (19)0.0042 (19)0.0018 (17)0.0002 (18)
C140.031 (2)0.054 (3)0.037 (2)0.007 (2)0.0029 (18)0.007 (2)
C150.035 (2)0.051 (3)0.033 (2)0.003 (2)0.0062 (17)0.0095 (19)
C160.071 (4)0.059 (4)0.067 (4)0.004 (3)0.010 (3)0.006 (3)
Geometric parameters (Å, º) top
Br1—C51.899 (4)C5—C61.357 (6)
N1—C81.266 (6)C6—H60.9300
N1—N21.379 (4)C7—H7A0.9600
N2—C91.354 (6)C7—H7B0.9600
N2—H20.89 (4)C7—H7C0.9600
O1—C21.362 (5)C8—H80.9300
O1—C71.420 (6)C9—C101.481 (5)
O2—C91.222 (5)C10—C151.385 (6)
O3—C131.363 (5)C10—C111.388 (6)
O3—H30.8200C11—C121.378 (5)
O4—C161.385 (6)C11—H110.9300
O4—H40.8200C12—C131.384 (6)
C1—C61.386 (6)C12—H120.9300
C1—C21.413 (6)C13—C141.381 (6)
C1—C81.462 (6)C14—C151.377 (6)
C2—C31.371 (6)C14—H140.9300
C3—C41.361 (7)C15—H150.9300
C3—H3A0.9300C16—H16A0.9600
C4—C51.389 (7)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C8—N1—N2115.9 (3)N1—C8—C1120.3 (4)
C9—N2—N1118.9 (3)N1—C8—H8119.8
C9—N2—H2124 (4)C1—C8—H8119.8
N1—N2—H2115 (4)O2—C9—N2122.0 (4)
C2—O1—C7118.6 (4)O2—C9—C10121.7 (4)
C13—O3—H3109.5N2—C9—C10116.3 (3)
C16—O4—H4109.5C15—C10—C11117.7 (4)
C6—C1—C2118.3 (4)C15—C10—C9117.6 (3)
C6—C1—C8121.9 (4)C11—C10—C9124.7 (4)
C2—C1—C8119.7 (4)C12—C11—C10121.5 (4)
O1—C2—C3125.5 (4)C12—C11—H11119.3
O1—C2—C1114.7 (4)C10—C11—H11119.3
C3—C2—C1119.8 (4)C11—C12—C13119.6 (4)
C4—C3—C2121.0 (4)C11—C12—H12120.2
C4—C3—H3A119.5C13—C12—H12120.2
C2—C3—H3A119.5O3—C13—C14117.9 (4)
C3—C4—C5119.4 (4)O3—C13—C12122.2 (4)
C3—C4—H4A120.3C14—C13—C12119.9 (4)
C5—C4—H4A120.3C15—C14—C13119.7 (4)
C6—C5—C4120.8 (4)C15—C14—H14120.1
C6—C5—Br1119.8 (3)C13—C14—H14120.1
C4—C5—Br1119.4 (3)C14—C15—C10121.5 (4)
C5—C6—C1120.6 (4)C14—C15—H15119.2
C5—C6—H6119.7C10—C15—H15119.2
C1—C6—H6119.7O4—C16—H16A109.5
O1—C7—H7A109.5O4—C16—H16B109.5
O1—C7—H7B109.5H16A—C16—H16B109.5
H7A—C7—H7B109.5O4—C16—H16C109.5
O1—C7—H7C109.5H16A—C16—H16C109.5
H7A—C7—H7C109.5H16B—C16—H16C109.5
H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (4)2.16 (5)3.009 (4)158 (5)
O4—H4···N10.822.643.239 (5)131
O4—H4···O20.821.962.729 (4)157
O3—H3···O4ii0.821.782.602 (5)175
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O3·CH4O
Mr381.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.1886 (7), 14.4464 (9), 20.5927 (13)
V3)3328.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.598, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
19306, 3638, 2234
Rint0.054
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.179, 1.06
No. of reflections3638
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.83

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (4)2.16 (5)3.009 (4)158 (5)
O4—H4···N10.822.643.239 (5)131.0
O4—H4···O20.821.962.729 (4)157.0
O3—H3···O4ii0.821.782.602 (5)175.1
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

We are gratefully acknowledge Chifeng University for research funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇukurovalı, A., Yılmaz, I., Gür, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science PubMed Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Şahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds