organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di-tert-butyl-5,5′-di­meth­oxy­bi­phenyl-2,2′-diol

aDepartment of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China, and bEquipment Department, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 13 June 2009; accepted 16 June 2009; online 24 June 2009)

The title compound, C22H30O4, displays twofold rotational symmetry. The two benzene rings are almost perpendicular to each other, forming a dihedral angle of 89.8 (6)°. In the crystal, mol­ecules are linked into an extended one-dimensional chain structure via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the various methods of preparing di-BHA [a dimer of 3-tert-butyl-4-hydroxy­anisole], see: Hewgill & Hewitt (1967[Hewgill, F. R. & Hewitt, D. G. (1967). J. Chem. Soc. C, pp. 726-730.]); Jarl et al. (2004[Jarl, I. V., Alison, C. H., Samuel, N., Rafael, S., Allison, M. M., Martin, L., Anthony, L. S., Christian, M. & Dieter, V. (2004). Adv. Synth. Catal. 346, 993-1003.]); Masahiro et al. (2005[Masahiro, O., Kanae, T. S., Takao, K., Kentaro, O., Masako, S., Shiro, U., Keiichi, H. & Toyoshige, E. (2005). Biol. Pharm. Bull. 28, 1120-1122.]); Seiichiro et al. (2004[Seiichiro, F., Mariko, I. & Ichiro, Y. (2004). Internet J. Mol. Des. pp. 241-246.]).

[Scheme 1]

Experimental

Crystal data
  • C22H30O4

  • Mr = 358.46

  • Tetragonal, I 41 /a

  • a = 13.4289 (8) Å

  • c = 23.127 (3) Å

  • V = 4170.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.49 × 0.49 × 0.38 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.972

  • 13638 measured reflections

  • 1938 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.04

  • 1938 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.08 2.7592 (15) 140
Symmetry code: (i) [x, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the previous literatures, several methods for preparing di-BHA [a dimer of 3-tert-butyl-4-hydroxyanisole (BHA)] have been reported (Hewgill & Hewitt, 1967; Masahiro et al., 2005; Jarl et al., 2004; Seiichiro et al., 2004), but its single-crystal and precise molecular structure has not been investigated so far. Here we describe the structure of the title compound, (I), (Fig. 1).

Di-BHA shows 2-fold rotational symmetry characters, where the 2-fold rotation axis is perpendicular to the C6—C6A bond. The oxygen atoms are almost coplanar with their own benzene ring-the largest deviation from the least-squares plane was found for O1 (or O1A), with an atom-plane distance of 0.017 Å. The two benzene rings have a dihedral angle of 89.8°, indicating that they are almost perpendicular to each other. The phenolic hydroxyl donor and methoxyl acceptor are involved in intermolecular hydrogen bonds and they extend di-BHA molecules into a one-dimensional chain structure along the b axis (Table 1, Fig.2), thus stabilizing di-BHA in the solid state.

Related literature top

For the several methods of preparing di-BHA [a dimer of 3-tert-butyl-4-hydroxyanisole], see: Hewgill & Hewitt (1967); Jarl et al. (2004); Masahiro et al. (2005); Seiichiro et al. (2004).

Experimental top

An easy preparation method improved by Jarl et al. (2004) was adopted in our experiment. A solution of [K3Fe(CN)6] (0.1 mol, 3.29 g) and KOH (0.1 mol, 5.61 g) in water (100 ml) was prepared and was added dropwise to a solution of 3-tert-butyl-4-hydroxyanisole (0.1 mol, 1.80 g) in acetone (10 ml) over 3 h at room temperature. After vigorous agitation, yellow rice-shaped precipitate was obtained and filtered. Then the solid product was extracted with CH2Cl2 (3 × 50 ml), and the organic phase was dried over Na2SO4. After removal of CH2Cl2 under vacuum, a light brown solid was obtained. It turned into white crystal substance after washed with anhydrous ethanol(3 × 50 ml). Dissolve the white crystal substance in CH2Cl2 and filter the solution. About 4 days later, colourless block-shaped crystals suitable for X-ray diffraction analysis were appeared by slow evaporation in a yield of 63%. m. p. 510-511 K. Analysis, found: C 73.57, H 8.44%; C22H30O4 requires: C 73.65, H 8.37%. IR (KBr, ν, cm-1): 3412.6(ν O—H), 1594.2, 1455.6(ν (C6H6), skeleton), 1396.2, 1365.4(ν (CH3)3-C, skeleton), 1215.3, 1138.8(νC-O), 784.1(γ(C=C—H)).

Refinement top

H atoms bonded to C were positioned geometrically with C—H distance of 0.93–0.96 Å, and treated as riding atoms, with Uiso(H)=1.2 or 1.5Ueq(C). The O—H hydrogen atom was located in a difference Fourier map and the applied restraint of the O—H distance was 0.820 Å, with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 25% probability level. Atoms with suffix A are at the symmetry position (-x, -y + 3/2, z).
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen bonds as dashed lines along b axis. H atoms on C atoms have been omitted.
3,3'-Di-tert-butyl-5,5'-dimethoxybiphenyl-2,2'-diol top
Crystal data top
C22H30O4Dx = 1.142 Mg m3
Mr = 358.46Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3994 reflections
Hall symbol: -I 4adθ = 3.0–25.5°
a = 13.4289 (8) ŵ = 0.08 mm1
c = 23.127 (3) ÅT = 291 K
V = 4170.5 (6) Å3Block, colourless
Z = 80.49 × 0.49 × 0.38 mm
F(000) = 1552
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1938 independent reflections
Radiation source: fine-focus sealed tube1542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.963, Tmax = 0.972k = 1516
13638 measured reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0476P)2 + 2.3626P]
where P = (Fo2 + 2Fc2)/3
1938 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C22H30O4Z = 8
Mr = 358.46Mo Kα radiation
Tetragonal, I41/aµ = 0.08 mm1
a = 13.4289 (8) ÅT = 291 K
c = 23.127 (3) Å0.49 × 0.49 × 0.38 mm
V = 4170.5 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1938 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1542 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.972Rint = 0.025
13638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
1938 reflectionsΔρmin = 0.13 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11953 (11)0.79586 (10)0.02439 (6)0.0416 (4)
C20.18758 (11)0.87570 (10)0.02195 (6)0.0416 (4)
C30.16557 (11)0.95179 (11)0.01654 (6)0.0431 (4)
H30.20851.00600.01880.052*
C40.08231 (11)0.95010 (10)0.05172 (6)0.0408 (3)
C50.01714 (11)0.87114 (10)0.04926 (6)0.0417 (4)
H50.03850.86960.07320.050*
C60.03503 (10)0.79350 (10)0.01059 (6)0.0387 (3)
C70.28338 (12)0.87786 (13)0.05857 (7)0.0546 (4)
C80.34307 (17)0.97382 (18)0.04844 (11)0.0950 (8)
H8A0.30181.03050.05660.142*
H8B0.36470.97640.00890.142*
H8C0.40010.97460.07350.142*
C90.34957 (16)0.78944 (19)0.04258 (11)0.0878 (7)
H9A0.40620.78760.06790.132*
H9B0.37180.79640.00330.132*
H9C0.31230.72880.04650.132*
C100.25901 (15)0.87337 (17)0.12326 (8)0.0725 (6)
H10A0.22300.93220.13420.109*
H10B0.31970.86950.14510.109*
H10C0.21900.81570.13100.109*
C110.00097 (17)1.02543 (14)0.13233 (9)0.0733 (6)
H11A0.01670.96980.15670.110*
H11B0.00281.08560.15470.110*
H11C0.06441.01680.11630.110*
O10.07070 (9)1.03143 (8)0.08749 (5)0.0586 (3)
O20.13978 (10)0.72001 (8)0.06230 (6)0.0665 (4)
H20.09970.67470.05740.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0462 (8)0.0351 (7)0.0437 (8)0.0028 (6)0.0020 (6)0.0010 (6)
C20.0421 (8)0.0389 (8)0.0438 (8)0.0058 (6)0.0027 (6)0.0030 (6)
C30.0453 (8)0.0369 (8)0.0470 (8)0.0119 (6)0.0005 (7)0.0021 (6)
C40.0483 (8)0.0313 (7)0.0427 (8)0.0033 (6)0.0002 (6)0.0021 (6)
C50.0409 (8)0.0403 (8)0.0440 (8)0.0042 (6)0.0047 (6)0.0015 (6)
C60.0393 (8)0.0338 (7)0.0428 (8)0.0048 (6)0.0025 (6)0.0024 (6)
C70.0491 (9)0.0582 (10)0.0565 (10)0.0083 (8)0.0133 (8)0.0002 (8)
C80.0763 (14)0.1044 (17)0.1042 (18)0.0472 (13)0.0422 (13)0.0238 (14)
C90.0574 (12)0.1129 (18)0.0930 (16)0.0194 (12)0.0211 (11)0.0159 (14)
C100.0739 (13)0.0843 (14)0.0595 (11)0.0043 (10)0.0228 (10)0.0031 (10)
C110.0946 (15)0.0568 (11)0.0686 (12)0.0020 (10)0.0309 (11)0.0131 (9)
O10.0791 (8)0.0406 (6)0.0562 (7)0.0134 (5)0.0178 (6)0.0115 (5)
O20.0759 (9)0.0465 (7)0.0770 (9)0.0174 (6)0.0289 (7)0.0210 (6)
Geometric parameters (Å, º) top
C1—O21.3711 (18)C8—H8A0.9600
C1—C61.394 (2)C8—H8B0.9600
C1—C21.410 (2)C8—H8C0.9600
C2—C31.387 (2)C9—H9A0.9600
C2—C71.541 (2)C9—H9B0.9600
C3—C41.383 (2)C9—H9C0.9600
C3—H30.9300C10—H10A0.9600
C4—C51.3761 (19)C10—H10B0.9600
C4—O11.3788 (17)C10—H10C0.9600
C5—C61.395 (2)C11—O11.400 (2)
C5—H50.9300C11—H11A0.9600
C6—C6i1.500 (3)C11—H11B0.9600
C7—C91.529 (3)C11—H11C0.9600
C7—C101.533 (3)O2—H20.8200
C7—C81.535 (3)
O2—C1—C6121.03 (13)C7—C8—H8B109.5
O2—C1—C2117.52 (13)H8A—C8—H8B109.5
C6—C1—C2121.45 (13)C7—C8—H8C109.5
C3—C2—C1116.61 (13)H8A—C8—H8C109.5
C3—C2—C7121.12 (13)H8B—C8—H8C109.5
C1—C2—C7122.25 (13)C7—C9—H9A109.5
C4—C3—C2122.53 (13)C7—C9—H9B109.5
C4—C3—H3118.7H9A—C9—H9B109.5
C2—C3—H3118.7C7—C9—H9C109.5
C5—C4—O1124.28 (13)H9A—C9—H9C109.5
C5—C4—C3120.16 (13)H9B—C9—H9C109.5
O1—C4—C3115.55 (12)C7—C10—H10A109.5
C4—C5—C6119.54 (13)C7—C10—H10B109.5
C4—C5—H5120.2H10A—C10—H10B109.5
C6—C5—H5120.2C7—C10—H10C109.5
C1—C6—C5119.70 (12)H10A—C10—H10C109.5
C1—C6—C6i121.90 (13)H10B—C10—H10C109.5
C5—C6—C6i118.31 (12)O1—C11—H11A109.5
C9—C7—C10109.25 (17)O1—C11—H11B109.5
C9—C7—C8108.15 (18)H11A—C11—H11B109.5
C10—C7—C8107.07 (16)O1—C11—H11C109.5
C9—C7—C2109.75 (14)H11A—C11—H11C109.5
C10—C7—C2110.95 (14)H11B—C11—H11C109.5
C8—C7—C2111.58 (14)C4—O1—C11118.33 (12)
C7—C8—H8A109.5C1—O2—H2109.5
O2—C1—C2—C3179.81 (14)O2—C1—C6—C6i2.8 (2)
C6—C1—C2—C30.6 (2)C2—C1—C6—C6i176.75 (13)
O2—C1—C2—C71.9 (2)C4—C5—C6—C11.1 (2)
C6—C1—C2—C7177.67 (14)C4—C5—C6—C6i177.55 (13)
C1—C2—C3—C41.0 (2)C3—C2—C7—C9117.04 (18)
C7—C2—C3—C4177.31 (14)C1—C2—C7—C961.1 (2)
C2—C3—C4—C50.3 (2)C3—C2—C7—C10122.12 (17)
C2—C3—C4—O1179.81 (14)C1—C2—C7—C1059.7 (2)
O1—C4—C5—C6178.71 (14)C3—C2—C7—C82.8 (2)
C3—C4—C5—C60.7 (2)C1—C2—C7—C8179.02 (17)
O2—C1—C6—C5179.17 (14)C5—C4—O1—C1113.7 (2)
C2—C1—C6—C50.4 (2)C3—C4—O1—C11166.78 (16)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.822.082.7592 (15)140
Symmetry code: (ii) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC22H30O4
Mr358.46
Crystal system, space groupTetragonal, I41/a
Temperature (K)291
a, c (Å)13.4289 (8), 23.127 (3)
V3)4170.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.49 × 0.38
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
13638, 1938, 1542
Rint0.025
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.04
No. of reflections1938
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.082.7592 (15)139.7
Symmetry code: (i) x, y1/2, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 20771054).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHewgill, F. R. & Hewitt, D. G. (1967). J. Chem. Soc. C, pp. 726–730.  Google Scholar
First citationJarl, I. V., Alison, C. H., Samuel, N., Rafael, S., Allison, M. M., Martin, L., Anthony, L. S., Christian, M. & Dieter, V. (2004). Adv. Synth. Catal. 346, 993–1003.  Google Scholar
First citationMasahiro, O., Kanae, T. S., Takao, K., Kentaro, O., Masako, S., Shiro, U., Keiichi, H. & Toyoshige, E. (2005). Biol. Pharm. Bull. 28, 1120–1122.  Web of Science PubMed Google Scholar
First citationSeiichiro, F., Mariko, I. & Ichiro, Y. (2004). Internet J. Mol. Des. pp. 241–246.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds