organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­methyl-2,2′-(m-phenyl­ene­di­methyl­ene)propane­di­nitrile

aFachbereich Chemie, Pharmazie und Geowissenschaften, Abteilung Lehramt Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and bInstitut für Anorganische Chemie, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 16 June 2009; accepted 17 June 2009; online 20 June 2009)

The title compound, C16H14N4, features an aromatic ring with two 2,2′-dicyano­propyl residues in positions 1 and 3, which are located above and below the ring plane. The two residues differ in their conformation with respect to the aromatic ring: whereas one of the Cmeth­yl—C—Cmethyl­ene—Caromatic torsion angles is gauche [68.93 (12)°], the other one is fully staggered [177.63 (9)°]. The crystal structure is stabilized by C—H⋯N hydrogen-bonding inter­actions.

Related literature

Calix[4]arenes, fixed in their cone conformation, offer a platform to attach various ligating functions via amide bonds to their wide or narrow rim, see: Arnaud-Neu et al. (1996[Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175-1182.]); Barboso et al. (1999[Barboso, S., Garcia Carrera, A., Matthews, S. E., Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Rouquette, H. & Schwing-Weill, M.-J. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 719-723.]); Casnati et al. (2005[Casnati, A., Della Ca', N., Fontanella, M., Sansone, F., Ugozzoli, F., Ungaro, R., Liger, K. & Dozol, J.-F. (2005). Eur. J. Org. Chem. pp. 2338-2348.]); Danila et al. (2005a[Danila, C., Böhmer, V. & Bolte, M. (2005a). Org. Biomol. Chem. 3, 172-184.],b[Danila, C., Böhmer, V. & Bolte, M. (2005b). Org. Biomol. Chem. 3, 3508-3513.]). Tetranitriles are suitable precursors for the attachment to the narrow rim. The title compound was envisaged as another potential tetranitrile. It is readily available by alkylation of methylmalonodinitrile with 1,3-bis-chloromethylbenzene.

[Scheme 1]

Experimental

Crystal data
  • C16H14N4

  • Mr = 262.31

  • Monoclinic, P 21 /c

  • a = 11.6475 (10) Å

  • b = 13.3751 (13) Å

  • c = 9.4691 (9) Å

  • β = 99.020 (7)°

  • V = 1456.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.47 × 0.24 × 0.22 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: none

  • 8679 measured reflections

  • 2725 independent reflections

  • 2410 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.04

  • 2725 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N24i 0.99 2.49 3.4028 (17) 153
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Calix[4]arenes, fixed in their cone conformation, offer a platform to attach various ligating functions via amide bonds to their wide or narrow rim [e.g. CMPO-groups (Arnaud-Neu et al., 1996; Barboso et al., 1999), picolinamides (Casnati et al., 2005)]. Suitable precursors for the attachment to the narrow rim are tetranitriles obtained by O-alkylation with ω-bromoalkyl nitriles, which can be easily reduced to the respective tetraamines (Danila et al., 2005a,b). The title compound, 1,3-bis-(2,2'-dicyano)propyl benzene, (Fig. 1), was envisaged as another potential tetranitrile. It is readily available by alkylation of methylmalonodinitrile with 1,3-bis-chloromethylbenzene.

The title compound features an aromatic ring with two 2,2'-dicyano-propyl residues in positions 1 and 3, which are located above and below the ring plane. The two residues differ in their conformation with respect to the aromatic ring: whereas one of the Cmethyl-C-Cmethylene-Caromatic torsion angles is gauche [68.93 (12)\%], the other one is fully staggered [177.63 (9)\%]. The crystal structure is stabilized by C—H···N hydrogen-bonding interactions (Table 1).

Related literature top

Calix[4]arenes, fixed in their cone conformation, offer a platform to attach various ligating functions via amide bonds to their wide or narrow rim, see: Arnaud-Neu et al. (1996); Barboso et al. (1999); Casnati et al. (2005); Danila et al. (2005a,b).

Experimental top

A solution of methylmalonodinitrile (1.59 g, 13.9 mmol) in dry acetone (10 ml) was added to a suspension of K2CO3 (3.95 g, 28.6 mmol) in 20 ml acetone. The mixture was stirred for 30 min. Then 1,3-bischloromethylbenzene (500 mg, 2.86 mmol) and KI (80.5 g) were added and the mixture was stirred 10 h under reflux. The solvent was evaporated to dryness and the residue taken up with CHCl3 (50 ml), washed with 1 M HCl, (2 x 30 ml), water and brine and dried over MgSO4. Evaporation of the solvent and purification by column chromatography (hexane/ethylacetate 5:1) gave 530 mg (71%) of 1,3-bis-(2,2'-dicyano)propyl benzene, m.p. 130–131°C; 1H NMR (400 MHz, CDCl3): δ / p.p.m.: 1.82 (s, 6H), 3.23 (s, 4H), 7.34 (d, 1H), 7.4–7.5 (m, 3H); MS(FD): m/z 262.3 (100%, M+).

Single crystals were obtained by slow evaporation of a solution in hexane/chloroform.

Refinement top

All H atoms could be located by difference Fourier synthesis. They were refined with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl)] using a riding model with Caromatic—H = 0.95 Å, Cmethyl—H = 0.98Å and Cmethylene—H = 0.99 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.
2,2'-Dimethyl-2,2'-(m-phenylenedimethylene)propanedinitrile top
Crystal data top
C16H14N4F(000) = 552
Mr = 262.31Dx = 1.196 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8902 reflections
a = 11.6475 (10) Åθ = 3.5–25.7°
b = 13.3751 (13) ŵ = 0.07 mm1
c = 9.4691 (9) ÅT = 173 K
β = 99.020 (7)°Block, colourless
V = 1456.9 (2) Å30.47 × 0.24 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS-II two-circle
diffractometer
2410 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 25.6°, θmin = 3.5°
ω scansh = 1414
8679 measured reflectionsk = 1616
2725 independent reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.3439P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2725 reflectionsΔρmax = 0.22 e Å3
182 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (4)
Crystal data top
C16H14N4V = 1456.9 (2) Å3
Mr = 262.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6475 (10) ŵ = 0.07 mm1
b = 13.3751 (13) ÅT = 173 K
c = 9.4691 (9) Å0.47 × 0.24 × 0.22 mm
β = 99.020 (7)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
2410 reflections with I > 2σ(I)
8679 measured reflectionsRint = 0.038
2725 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2725 reflectionsΔρmin = 0.16 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24600 (9)0.73229 (9)0.32550 (12)0.0222 (3)
C20.32892 (9)0.68926 (8)0.43145 (12)0.0225 (3)
H20.33440.61850.43820.027*
C30.40374 (9)0.74802 (8)0.52747 (12)0.0217 (3)
C40.39613 (10)0.85248 (9)0.51626 (12)0.0256 (3)
H40.44610.89350.58090.031*
C50.31502 (10)0.89599 (9)0.41008 (13)0.0285 (3)
H50.31070.96670.40190.034*
C60.24024 (10)0.83659 (9)0.31583 (12)0.0262 (3)
H60.18490.86720.24450.031*
C110.16383 (10)0.66726 (9)0.22412 (12)0.0242 (3)
H11A0.20930.61290.18830.029*
H11B0.13000.70830.14090.029*
C120.06227 (10)0.61940 (9)0.29147 (12)0.0240 (3)
C130.00481 (10)0.69976 (10)0.35020 (14)0.0313 (3)
N130.05588 (11)0.76326 (11)0.39209 (16)0.0516 (4)
C140.10897 (10)0.55154 (10)0.41158 (13)0.0280 (3)
N140.14425 (10)0.49664 (10)0.50128 (13)0.0423 (3)
C150.01964 (11)0.55815 (10)0.17831 (13)0.0328 (3)
H15A0.02490.50530.13990.049*
H15B0.05390.60240.10050.049*
H15C0.08170.52800.22310.049*
C210.48821 (9)0.69770 (9)0.64449 (12)0.0233 (3)
H21A0.45190.63570.67400.028*
H21B0.50170.74260.72850.028*
C220.60898 (9)0.67039 (9)0.59992 (12)0.0227 (3)
C230.59040 (10)0.60957 (9)0.46639 (12)0.0262 (3)
N230.57367 (10)0.56598 (9)0.36058 (12)0.0371 (3)
C240.67231 (10)0.60763 (9)0.71679 (12)0.0256 (3)
N240.71923 (10)0.56270 (8)0.81204 (12)0.0376 (3)
C250.68272 (11)0.76360 (10)0.57854 (14)0.0325 (3)
H25A0.69470.80330.66660.049*
H25B0.64200.80420.50010.049*
H25C0.75820.74250.55540.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (5)0.0253 (6)0.0232 (5)0.0021 (4)0.0095 (4)0.0013 (4)
C20.0205 (5)0.0209 (5)0.0280 (6)0.0022 (4)0.0095 (4)0.0023 (4)
C30.0190 (5)0.0245 (6)0.0236 (6)0.0023 (4)0.0100 (4)0.0006 (4)
C40.0249 (6)0.0243 (6)0.0293 (6)0.0005 (5)0.0090 (5)0.0036 (5)
C50.0318 (6)0.0207 (6)0.0350 (6)0.0053 (5)0.0112 (5)0.0014 (5)
C60.0257 (6)0.0261 (6)0.0280 (6)0.0075 (5)0.0083 (5)0.0049 (5)
C110.0245 (5)0.0275 (6)0.0214 (5)0.0026 (5)0.0064 (4)0.0009 (4)
C120.0224 (5)0.0279 (6)0.0218 (6)0.0015 (5)0.0042 (4)0.0024 (4)
C130.0207 (5)0.0397 (7)0.0335 (6)0.0011 (5)0.0047 (5)0.0086 (5)
N130.0343 (6)0.0557 (8)0.0666 (9)0.0067 (6)0.0131 (6)0.0225 (7)
C140.0217 (5)0.0377 (7)0.0258 (6)0.0038 (5)0.0071 (5)0.0008 (5)
N140.0298 (6)0.0580 (8)0.0390 (6)0.0046 (5)0.0051 (5)0.0170 (6)
C150.0347 (6)0.0351 (7)0.0268 (6)0.0059 (5)0.0005 (5)0.0038 (5)
C210.0225 (5)0.0265 (6)0.0224 (5)0.0015 (4)0.0077 (4)0.0004 (4)
C220.0216 (5)0.0239 (6)0.0233 (5)0.0021 (4)0.0056 (4)0.0013 (4)
C230.0249 (6)0.0286 (6)0.0259 (6)0.0067 (5)0.0064 (5)0.0034 (5)
N230.0407 (6)0.0402 (6)0.0303 (6)0.0102 (5)0.0054 (5)0.0049 (5)
C240.0257 (6)0.0251 (6)0.0265 (6)0.0031 (5)0.0056 (5)0.0025 (5)
N240.0444 (7)0.0345 (6)0.0323 (6)0.0110 (5)0.0011 (5)0.0017 (5)
C250.0271 (6)0.0327 (7)0.0391 (7)0.0043 (5)0.0096 (5)0.0042 (5)
Geometric parameters (Å, º) top
C1—C61.3989 (16)C12—C151.5521 (16)
C1—C21.4024 (16)C13—N131.1431 (18)
C1—C111.5185 (16)C14—N141.1489 (17)
C2—C31.3983 (16)C15—H15A0.9800
C2—H20.9500C15—H15B0.9800
C3—C41.4029 (16)C15—H15C0.9800
C3—C211.5189 (15)C21—C221.5737 (15)
C4—C51.3944 (17)C21—H21A0.9900
C4—H40.9500C21—H21B0.9900
C5—C61.3938 (17)C22—C241.4891 (16)
C5—H50.9500C22—C231.4905 (16)
C6—H60.9500C22—C251.5452 (16)
C11—C121.5661 (16)C23—N231.1491 (16)
C11—H11A0.9900C24—N241.1483 (16)
C11—H11B0.9900C25—H25A0.9800
C12—C131.4870 (17)C25—H25B0.9800
C12—C141.4898 (16)C25—H25C0.9800
C6—C1—C2118.46 (11)C15—C12—C11110.88 (9)
C6—C1—C11120.72 (10)N13—C13—C12178.01 (15)
C2—C1—C11120.82 (10)N14—C14—C12177.80 (14)
C3—C2—C1121.57 (10)C12—C15—H15A109.5
C3—C2—H2119.2C12—C15—H15B109.5
C1—C2—H2119.2H15A—C15—H15B109.5
C2—C3—C4119.01 (10)C12—C15—H15C109.5
C2—C3—C21119.45 (10)H15A—C15—H15C109.5
C4—C3—C21121.50 (10)H15B—C15—H15C109.5
C5—C4—C3119.86 (11)C3—C21—C22114.28 (9)
C5—C4—H4120.1C3—C21—H21A108.7
C3—C4—H4120.1C22—C21—H21A108.7
C6—C5—C4120.56 (11)C3—C21—H21B108.7
C6—C5—H5119.7C22—C21—H21B108.7
C4—C5—H5119.7H21A—C21—H21B107.6
C5—C6—C1120.52 (11)C24—C22—C23108.18 (9)
C5—C6—H6119.7C24—C22—C25109.35 (9)
C1—C6—H6119.7C23—C22—C25109.81 (10)
C1—C11—C12114.71 (9)C24—C22—C21106.92 (9)
C1—C11—H11A108.6C23—C22—C21109.70 (9)
C12—C11—H11A108.6C25—C22—C21112.74 (9)
C1—C11—H11B108.6N23—C23—C22177.17 (12)
C12—C11—H11B108.6N24—C24—C22176.36 (12)
H11A—C11—H11B107.6C22—C25—H25A109.5
C13—C12—C14107.77 (10)C22—C25—H25B109.5
C13—C12—C15109.73 (10)H25A—C25—H25B109.5
C14—C12—C15108.47 (10)C22—C25—H25C109.5
C13—C12—C11109.36 (10)H25A—C25—H25C109.5
C14—C12—C11110.56 (9)H25B—C25—H25C109.5
C6—C1—C2—C30.90 (16)C6—C1—C11—C12104.02 (12)
C11—C1—C2—C3178.74 (10)C2—C1—C11—C1275.62 (13)
C1—C2—C3—C40.63 (16)C1—C11—C12—C1356.49 (13)
C1—C2—C3—C21177.21 (10)C1—C11—C12—C1462.02 (13)
C2—C3—C4—C50.23 (16)C1—C11—C12—C15177.63 (9)
C21—C3—C4—C5178.02 (10)C2—C3—C21—C2288.93 (12)
C3—C4—C5—C60.80 (17)C4—C3—C21—C2293.29 (12)
C4—C5—C6—C10.52 (17)C3—C21—C22—C24170.87 (9)
C2—C1—C6—C50.32 (17)C3—C21—C22—C2353.79 (13)
C11—C1—C6—C5179.32 (10)C3—C21—C22—C2568.93 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N24i0.992.493.4028 (17)153
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14N4
Mr262.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.6475 (10), 13.3751 (13), 9.4691 (9)
β (°) 99.020 (7)
V3)1456.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.47 × 0.24 × 0.22
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8679, 2725, 2410
Rint0.038
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.04
No. of reflections2725
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N24i0.992.493.4028 (17)153
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationArnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175–1182.  Google Scholar
First citationBarboso, S., Garcia Carrera, A., Matthews, S. E., Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Rouquette, H. & Schwing-Weill, M.-J. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 719–723.  CrossRef Google Scholar
First citationCasnati, A., Della Ca', N., Fontanella, M., Sansone, F., Ugozzoli, F., Ungaro, R., Liger, K. & Dozol, J.-F. (2005). Eur. J. Org. Chem. pp. 2338–2348.  Web of Science CSD CrossRef Google Scholar
First citationDanila, C., Böhmer, V. & Bolte, M. (2005a). Org. Biomol. Chem. 3, 172–184.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDanila, C., Böhmer, V. & Bolte, M. (2005b). Org. Biomol. Chem. 3, 3508–3513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds