metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ-1H-benzimidazole-5,6-di­carboxyl­ato)zinc(II)] monohydrate]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuesht@scnu.edu.cn

(Received 17 May 2009; accepted 10 June 2009; online 13 June 2009)

The three-dimensional polymeric title compound, {[Zn(C9H4N2O4)]·H2O}n, contains one crystallographically independent ZnII atom, one fully deprotonated 1H-benzimid­azole-5,6-dicarboxyl­ate (bdc) ligand and one uncoordinated water mol­ecule. The ZnII atom is four-coordinated by three O atoms and one N atom from the bdc ligands, giving a distorted tetra­hedral coordination geometry. The uncoordinated water mol­ecule is bound to the main structure through a strong bdc–water N—H⋯O hydrogen bond, and two much weaker water–bdc O—H⋯O inter­actions.

Related literature

For structures of other bdc complexes, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Wei et al. (2008[Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087-2089.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H4N2O4)]·H2O

  • Mr = 287.55

  • Monoclinic, P 21 /c

  • a = 6.4735 (5) Å

  • b = 8.1836 (6) Å

  • c = 18.4407 (12) Å

  • β = 104.397 (2)°

  • V = 946.25 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 298 K

  • 0.35 × 0.26 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.444, Tmax = 0.625

  • 4613 measured reflections

  • 1665 independent reflections

  • 1513 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.06

  • 1665 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1W 0.86 2.02 2.809 (3) 152
O1W—H1W⋯O1i 0.93 2.45 3.211 (5) 139
O1W—H2W⋯O4ii 0.91 2.29 3.095 (3) 146
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Heterocyclic carboxylic acids have atracted attention not only because their versatile coordination modes but also owing to their forming high-dimensional polymers through H-bonding interactions. 1H-benzimidazole-5,6-dicarboxylic acid (bdc), having six coordination points, is a good candidate for the generation of three-dimensional coordination polymers. However, up to now the complexes based on the bdc ligand are rare (Lo et al., 2007; Gao et al., 2008; Wei et al., 2008; Yao et al., 2008). Here we report the first three-dimensional Zn coordination polymer connected by bdc ligands, [Zn(C9H4N2O2)].H2O.

As is shown in Figure 1, the asymmetric unit consists of one Zn2+ cation, a fully deprotonated bdc2- ligand, and a free water moelcule. The cation has a tetrahedral coordination environment, and is surrounded by three oxygen and one nitrogen atoms from the bdc ligands. A packing diagram showing the 3D structure coming out from the tetradentate character of the bdc ligand is shown in Figure 2. To the best of our knowledge, the title compound is the first 3D transition metal coordination polymer based on the 1H-benzimidazole-5,6-dicarboxylic acid ligand.

Related literature top

For some the structures of other bdc complexes, see: Gao et al. (2008); Lo et al. (2007); Wei et al. (2008); Yao et al. (2008).

Experimental top

A mixture of bdc (0.0415 g, 0.20 mmol), Zn(NO3)2.6H2O (0.0594 g, 0.20 mmol) and water (10 ml) was heated up to 430 K for 72 h in a 23 ml Teflon-lined stainless-steel autoclave and then cooled down to room temperature in a 278 K/hour rate. Colourless prismatic crystals were collected and dried in air.

Refinement top

H atoms attached to carbon and nitrogen were placed at calculated positions and treated as riding on their parent atoms with C—H = 0.93Å, C—N = 0.86Å. Those attached to oxygen were found from the Fourier maps, and allowed to ride without further refinement. In all cases Uĩso~(H) = 1.2 or 1.5 U~eq~(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of the title compound, with atom numbering. Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, y+1/2, -z+3/2; (iii) x-1, y, z.
[Figure 2] Fig. 2. The packing diagram of the title compound, with H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.
Poly[[(µ-1H-benzimidazole-5,6-dicarboxylato)zinc(II)] monohydrate] top
Crystal data top
[Zn(C9H4N2O4)]·H2OF(000) = 576
Mr = 287.55Dx = 2.018 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2639 reflections
a = 6.4735 (5) Åθ = 2.3–27.6°
b = 8.1836 (6) ŵ = 2.61 mm1
c = 18.4407 (12) ÅT = 298 K
β = 104.397 (2)°Block, colorless
V = 946.25 (12) Å30.35 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1665 independent reflections
Radiation source: fine-focus sealed tube1513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.444, Tmax = 0.625k = 98
4613 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.8076P]
where P = (Fo2 + 2Fc2)/3
1665 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C9H4N2O4)]·H2OV = 946.25 (12) Å3
Mr = 287.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4735 (5) ŵ = 2.61 mm1
b = 8.1836 (6) ÅT = 298 K
c = 18.4407 (12) Å0.35 × 0.26 × 0.18 mm
β = 104.397 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1665 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1513 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.625Rint = 0.019
4613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
1665 reflectionsΔρmin = 0.32 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6805 (4)0.7618 (3)1.14674 (15)0.0244 (6)
H10.75620.75651.19670.029*
C20.4362 (4)0.8133 (3)1.04587 (14)0.0210 (6)
C30.5993 (4)0.7274 (3)1.02485 (14)0.0209 (6)
C40.5896 (4)0.6922 (3)0.95017 (14)0.0232 (6)
H40.69860.63580.93640.028*
C50.2433 (4)0.8286 (3)0.91858 (14)0.0210 (6)
C60.2567 (4)0.8630 (3)0.99290 (14)0.0225 (6)
H60.14740.91841.00700.027*
C70.4108 (4)0.7447 (3)0.89738 (14)0.0198 (5)
C80.0478 (4)0.8790 (3)0.85989 (15)0.0244 (6)
C90.4056 (4)0.7163 (3)0.81632 (14)0.0200 (6)
N10.4937 (3)0.8337 (3)1.12397 (12)0.0223 (5)
N20.7500 (3)0.6973 (3)1.09061 (12)0.0255 (5)
H20.86820.64591.09480.031*
O10.0221 (4)0.8307 (4)0.79625 (13)0.0700 (10)
O20.0815 (3)0.9719 (3)0.88154 (11)0.0371 (5)
O30.3461 (3)0.5800 (3)0.78853 (10)0.0317 (5)
O40.4720 (4)0.8254 (3)0.78041 (11)0.0360 (5)
Zn10.35253 (5)1.02462 (4)0.814219 (16)0.02108 (13)
O1W1.1216 (4)0.5187 (3)1.15400 (15)0.0533 (7)
H1W1.06040.45561.18530.080*
H2W1.19680.60241.18100.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (14)0.0330 (16)0.0141 (13)0.0009 (12)0.0004 (11)0.0029 (11)
C20.0226 (13)0.0263 (14)0.0138 (13)0.0008 (11)0.0037 (11)0.0001 (10)
C30.0189 (13)0.0270 (15)0.0153 (13)0.0023 (11)0.0013 (11)0.0010 (11)
C40.0215 (13)0.0306 (15)0.0177 (14)0.0056 (11)0.0053 (11)0.0025 (11)
C50.0212 (13)0.0264 (15)0.0146 (13)0.0006 (11)0.0029 (11)0.0019 (10)
C60.0206 (13)0.0310 (15)0.0159 (13)0.0052 (11)0.0046 (11)0.0016 (11)
C70.0222 (13)0.0220 (14)0.0151 (13)0.0006 (11)0.0043 (10)0.0015 (10)
C80.0230 (14)0.0329 (16)0.0160 (14)0.0016 (12)0.0025 (11)0.0013 (11)
C90.0174 (12)0.0266 (15)0.0152 (12)0.0018 (10)0.0025 (10)0.0009 (11)
N10.0239 (12)0.0313 (13)0.0107 (11)0.0047 (10)0.0026 (9)0.0001 (9)
N20.0208 (12)0.0352 (14)0.0189 (12)0.0083 (10)0.0017 (9)0.0002 (10)
O10.0496 (15)0.125 (3)0.0230 (13)0.0460 (16)0.0143 (11)0.0294 (14)
O20.0285 (11)0.0578 (15)0.0209 (11)0.0200 (10)0.0012 (9)0.0072 (9)
O30.0511 (13)0.0269 (11)0.0190 (10)0.0077 (10)0.0125 (9)0.0057 (8)
O40.0532 (14)0.0376 (13)0.0185 (10)0.0200 (10)0.0117 (10)0.0050 (9)
Zn10.0221 (2)0.0270 (2)0.01325 (19)0.00140 (12)0.00268 (13)0.00017 (12)
O1W0.0410 (14)0.0652 (18)0.0468 (16)0.0148 (12)0.0022 (12)0.0085 (12)
Geometric parameters (Å, º) top
C1—N11.316 (3)C6—H60.9300
C1—N21.336 (3)C7—C91.505 (4)
C1—H10.9300C8—O11.210 (3)
C2—C61.380 (4)C8—O21.266 (3)
C2—C31.401 (4)C9—O31.247 (3)
C2—N11.405 (3)C9—O41.250 (3)
C3—N21.376 (3)N2—H20.8600
C3—C41.393 (4)Zn1—O21.929 (2)
C4—C71.383 (4)Zn1—N1i1.999 (2)
C4—H40.9300Zn1—O3ii1.9587 (19)
C5—C61.381 (4)Zn1—O4iii1.996 (2)
C5—C71.418 (4)O1W—H1W0.9333
C5—C81.504 (4)O1W—H2W0.9127
N1—C1—N2112.9 (2)O1—C8—C5119.8 (3)
N1—C1—H1123.6O2—C8—C5116.2 (2)
N2—C1—H1123.6O3—C9—O4122.2 (2)
C6—C2—C3120.8 (2)O3—C9—C7118.3 (2)
C6—C2—N1130.8 (2)O4—C9—C7119.3 (2)
C3—C2—N1108.5 (2)C1—N1—C2105.2 (2)
N2—C3—C4133.0 (2)C1—N1—Zn1i126.26 (18)
N2—C3—C2105.3 (2)C2—N1—Zn1i127.64 (17)
C4—C3—C2121.7 (2)C1—N2—C3108.1 (2)
C7—C4—C3117.1 (2)C1—N2—H2125.9
C7—C4—H4121.4C3—N2—H2125.9
C3—C4—H4121.4C8—O2—Zn1119.85 (18)
C6—C5—C7120.6 (2)C9—O3—Zn1iv121.73 (18)
C6—C5—C8119.5 (2)C9—O4—Zn1v131.46 (18)
C7—C5—C8119.9 (2)O2—Zn1—O3ii116.08 (9)
C2—C6—C5118.5 (2)O2—Zn1—O4iii111.99 (10)
C2—C6—H6120.8O3ii—Zn1—O4iii91.96 (9)
C5—C6—H6120.8O2—Zn1—N1i103.56 (9)
C4—C7—C5121.3 (2)O3ii—Zn1—N1i122.67 (9)
C4—C7—C9117.4 (2)O4iii—Zn1—N1i110.27 (9)
C5—C7—C9121.3 (2)H1W—O1W—H2W109.2
O1—C8—O2124.0 (3)
C6—C2—C3—N2179.7 (3)C5—C7—C9—O399.2 (3)
N1—C2—C3—N20.4 (3)C4—C7—C9—O492.4 (3)
C6—C2—C3—C41.5 (4)C5—C7—C9—O484.8 (3)
N1—C2—C3—C4178.4 (3)N2—C1—N1—C20.3 (3)
N2—C3—C4—C7178.8 (3)N2—C1—N1—Zn1i169.63 (19)
C2—C3—C4—C70.5 (4)C6—C2—N1—C1179.7 (3)
C3—C2—C6—C51.1 (4)C3—C2—N1—C10.4 (3)
N1—C2—C6—C5178.8 (3)C6—C2—N1—Zn1i10.6 (4)
C7—C5—C6—C20.2 (4)C3—C2—N1—Zn1i169.32 (18)
C8—C5—C6—C2179.0 (3)N1—C1—N2—C30.0 (3)
C3—C4—C7—C50.9 (4)C4—C3—N2—C1178.4 (3)
C3—C4—C7—C9176.3 (2)C2—C3—N2—C10.2 (3)
C6—C5—C7—C41.3 (4)O1—C8—O2—Zn17.0 (5)
C8—C5—C7—C4178.0 (3)C5—C8—O2—Zn1173.02 (19)
C6—C5—C7—C9175.8 (3)O4—C9—O3—Zn1iv0.2 (4)
C8—C5—C7—C94.9 (4)C7—C9—O3—Zn1iv175.59 (17)
C6—C5—C8—O1170.2 (3)O3—C9—O4—Zn1v160.8 (2)
C7—C5—C8—O19.1 (5)C7—C9—O4—Zn1v14.9 (4)
C6—C5—C8—O29.8 (4)C8—O2—Zn1—O3ii44.1 (3)
C7—C5—C8—O2170.9 (3)C8—O2—Zn1—O4iii59.7 (2)
C4—C7—C9—O383.6 (3)C8—O2—Zn1—N1i178.5 (2)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1/2, z+3/2; (iii) x1, y, z; (iv) x, y1/2, z+3/2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.862.022.809 (3)152
O1W—H1W···O1vi0.932.453.211 (5)139
O1W—H2W···O4vii0.912.293.095 (3)146
Symmetry codes: (vi) x+1, y+1, z+2; (vii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C9H4N2O4)]·H2O
Mr287.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.4735 (5), 8.1836 (6), 18.4407 (12)
β (°) 104.397 (2)
V3)946.25 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.35 × 0.26 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.444, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
4613, 1665, 1513
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.06
No. of reflections1665
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.32

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.862.022.809 (3)152.4
O1W—H1W···O1i0.932.453.211 (5)139.2
O1W—H2W···O4ii0.912.293.095 (3)146.3
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Nature and Science Foundation of Guangdong Province (grant No. 7005808), Guangdong Provincial Science and Technology Bureau (grant 2008B010600009) and the NSFC (grant No. U0734005).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds