organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5,6-Di­hydro­benzimidazolo[1,2-c]quinazolin-6-yl)aniline methanol solvate

aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and bDepartment of Chemistry, Ludiwig-Maximilians University, D-81377 München, Germany
*Correspondence e-mail: thomas.gerber@nmmu.ac.za

(Received 28 May 2009; accepted 9 June 2009; online 13 June 2009)

In the structure of the title compound, C20H16N4·CH4O, the aniline ring forms dihedral angles of 89.9 (2) and 85.4 (2)° with the benzimidazole and benzene rings, respectively. The orientation of the aniline ring is mainly determined by strong hydrogen bonds between the amino group and the non-fused quinazoline N atom. Inter­molecular hydrogen bonds of the N—H⋯N—H⋯N type along [010] and the N—H⋯O—H⋯N type along [100] are formed, resulting in C22(4) and C22(10) descriptors, respectively, on a binary level of graph-set analysis. There are C—H⋯π contacts with H⋯π distances of 2.44 Å; however, no π-stacking is observed.

Related literature

For the synthesis of quinazolines, see: Kubicova et al. (2003[Kubicova, L., Sustr, M., Kralova, K., Chobnot, V., Vytlacilova, J., Jahodar, L., Vuorela, P., Machacek, M. & Kaustova, J. (2003). Molecules, 8, 756-769.]); Niementowski (1895[Niementowski, S. (1895). J. Prakt. Chem. 51, 546-566.]). For the conformation, see: Cuny et al. (1980[Cuny, E., Lichtenthaler, F. W. & Moser, A. (1980). Tetrahedron Lett. 21, 3029-3032.]); Williamson (1957[Williamson, T. A. (1957). Heterocycl. Compd, 6, 331-339.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N4·CH4O

  • Mr = 344.41

  • Monoclinic, P 21 /c

  • a = 9.3703 (2) Å

  • b = 5.1728 (1) Å

  • c = 35.5169 (9) Å

  • β = 91.3908 (14)°

  • V = 1721.02 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.23 × 0.06 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 9302 measured reflections

  • 3136 independent reflections

  • 2089 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 1.08

  • 3136 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3a⋯N4i 0.93 (2) 2.13 (2) 3.058 (3) 174.5 (18)
N4—H4a⋯O1ii 0.95 (2) 2.00 (3) 2.946 (3) 174.4 (19)
N4—H4b⋯N3 0.86 (2) 2.35 (2) 3.006 (3) 133.8 (19)
O1—H1⋯N1 0.95 (3) 1.88 (3) 2.814 (2) 167 (3)
C14—H14⋯Cgi 1.00 2.44 3.408 (2) 162
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z. Cg is the centroid of the C1–C6 ring.

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work the structure of 2-(2,3,5,6-tetrahydrobenzimidazo[1,2-c]quinazolin-5-yl)benzenamine (Figure 1) has been determined to explore its suitability as a bidentate ligand for various metal ions. In the structure the quinazoline ring adopts a chair conformation: atoms C7, C8, C13, N2 and N3 are coplanar, with atom C14 departing from the plane by 0.2391 Å . The orientation of the aniline ring is mainly determined by a series of hydrogen-bonds between NH2 and NH groups, and between the phenylamino group and the quinazoline nitrogen (Figure 1 and Table 1). This ring makes dihedral angles of 89.9 (2)° and 85.4 (2)° with the benzimidazole and phenyl rings respectively. The ligand bond distances and angles show that N1—C7 is a localized double bond [1.321 (3) Å], with N2—C7 a single bond at 1.383 (3) Å. The N3—C14 bond length is 1.459 (3) Å, and the N3—C14—N2 bond angle [108.14 (17)°] illustrates the sp3 hybridization of C14. All the other bond lengths and angles in the molecule are normal.

Intermolecular hydrogen bonds of the N–H···N–H···N type along [010] and N–H···O–H···N along [100] are formed (Table 1) resulting in a C22(4) descriptor and a C22(10) descriptor on a binary level of graph set analysis, respectively. C–H···π contacts with H···Cg distances of 2.44 Å are presnt in the structure (Cg is the centre of gravity of ring C1 – C6); however, no π-stacking is observed.

Related literature top

For the synthesis of quinazolines, see: Kubicova et al. (2003); Niementowski (1895). For the conformation, see: Cuny et al. (1980); Williamson (1957). Cg is the centroid of the C1–C6 ring.

Experimental top

All chemicals used (reagent grade) were commercially available. A mass of 1.22 g (0.010 mol) of 2-aminobenzaldehyde was dissolved in methanol (50 cm3), and 2.09 g (0.010 mol) of 2-(2-aminophenyl)-1-benzimidazole was added with stirring. The mixture was heated under reflux for 2 h, then cooled to room temperature and filtered. The volume of the solution was reduced to ~ 10 cm3, and left to evaporate slowly at room temperature. After 2 days 2.48 g (72%) of colourless crystals, with the formulation C20H16N4.CH4O and suitable for X-ray analysis, were collected. M.p. 211°C. 1H NMR (300 MHz, d6-DMSO): 7.97 (1H,d), 7.62 (1H, d), 7.27 (1H, d), 7.25 (1H,t), 7.13 (2H, t), 6.97–7.02 (2H, m), 6.94 (1H, t), 6.86 (1H, t), 6.78 (1H, d), 6.61 (1H, d), 6.54(1H, t), 5.45 (2H, s), 3.18 (3H, s).

Refinement top

All H atoms bonded to C atoms were calculated in idealized position and refined as riding on their parent atoms with Uiso(H) values of 1.2 Ueq(C). All H atoms bonded to N and O atoms were refined freely with individual Uiso(H) values.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PARST (Nardelli, 1995), publCIF (Westrip, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probability level). Hydrogen bonds determining the conformational arrangement of the analine rings are also shown. Symmetry codes: (i): x, y+1, z; (ii) x+1, y, z.
2-(5,6-Dihydrobenzimidazolo[1,2-c]quinazolin-6-yl)aniline methanol solvate top
Crystal data top
C20H16N4·CH4OF(000) = 728
Mr = 344.41Dx = 1.329 (1) Mg m3
Monoclinic, P21/cMelting point: 484 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3703 (2) ÅCell parameters from 41046 reflections
b = 5.1728 (1) Åθ = 3.1–25.4°
c = 35.5169 (9) ŵ = 0.09 mm1
β = 91.3908 (14)°T = 200 K
V = 1721.02 (7) Å3Rod, yellow
Z = 40.23 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2089 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.051
MONTEL, graded multilayered X-ray optics monochromatorθmax = 25.4°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 1111
CCD; rotation images, ϕ and ω scansk = 56
9302 measured reflectionsl = 4242
3136 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.5855P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 0.19 e Å3
253 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0138 (19)
Crystal data top
C20H16N4·CH4OV = 1721.02 (7) Å3
Mr = 344.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3703 (2) ŵ = 0.09 mm1
b = 5.1728 (1) ÅT = 200 K
c = 35.5169 (9) Å0.23 × 0.06 × 0.05 mm
β = 91.3908 (14)°
Data collection top
Nonius KappaCCD
diffractometer
2089 reflections with I > 2σ(I)
9302 measured reflectionsRint = 0.051
3136 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.19 e Å3
3136 reflectionsΔρmin = 0.20 e Å3
253 parameters
Special details top

Refinement. N- and O-bonded H: All H-atom parameters refined C-bonded H: H-atom parameters constrained

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05660 (18)0.5134 (3)0.32314 (5)0.0506 (5)
H10.038 (3)0.482 (5)0.3324 (8)0.087 (10)*
N10.20470 (18)0.3599 (3)0.35685 (5)0.0349 (5)
N20.38507 (17)0.1319 (3)0.38325 (5)0.0321 (5)
N30.5138 (2)0.1946 (4)0.35148 (5)0.0407 (5)
H3a0.564 (2)0.350 (5)0.3544 (6)0.043 (7)*
N40.6823 (2)0.2995 (4)0.35560 (6)0.0381 (5)
H4a0.764 (3)0.364 (4)0.3436 (6)0.051 (7)*
H4b0.635 (2)0.195 (4)0.3412 (6)0.040 (7)*
C10.2283 (2)0.4419 (4)0.39363 (6)0.0329 (5)
C20.1591 (2)0.6363 (4)0.41352 (6)0.0394 (6)
H20.08630.73870.40190.047*
C30.2005 (2)0.6737 (5)0.45063 (7)0.0437 (6)
H30.15450.80370.46480.052*
C40.3083 (3)0.5254 (5)0.46794 (6)0.0443 (6)
H40.33320.55570.49370.053*
C50.3792 (2)0.3361 (4)0.44846 (6)0.0393 (6)
H50.45280.23600.46010.047*
C60.3383 (2)0.2981 (4)0.41099 (6)0.0317 (5)
C70.2981 (2)0.1726 (4)0.35178 (6)0.0307 (5)
C80.3146 (2)0.0110 (4)0.31914 (6)0.0321 (5)
C90.2270 (2)0.0334 (5)0.28675 (6)0.0410 (6)
H90.15720.16640.28530.049*
C100.2408 (3)0.1347 (5)0.25705 (6)0.0475 (7)
H100.18000.12080.23540.057*
C110.3452 (3)0.3251 (5)0.25931 (6)0.0452 (6)
H110.35520.44190.23890.054*
C120.4343 (2)0.3483 (4)0.29040 (6)0.0393 (6)
H120.50600.47810.29120.047*
C130.4193 (2)0.1808 (4)0.32092 (6)0.0333 (5)
C140.4874 (2)0.0827 (4)0.38838 (6)0.0342 (5)
H140.44310.21780.40450.041*
C150.6265 (2)0.0014 (4)0.40688 (6)0.0322 (5)
C160.7166 (2)0.1831 (4)0.39045 (6)0.0337 (5)
C170.8413 (2)0.2541 (5)0.40991 (7)0.0423 (6)
H170.90130.38250.39960.051*
C180.8792 (3)0.1423 (5)0.44374 (7)0.0478 (7)
H180.96470.19480.45650.057*
C190.7947 (3)0.0451 (5)0.45936 (7)0.0469 (6)
H190.82250.12650.48240.056*
C200.6682 (2)0.1127 (4)0.44085 (6)0.0408 (6)
H200.60860.24000.45160.049*
C210.0816 (3)0.7792 (5)0.32160 (8)0.0677 (8)
H21A0.01880.86710.34000.102*
H21B0.18140.81410.32750.102*
H21C0.06230.84300.29620.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0392 (11)0.0532 (12)0.0589 (11)0.0000 (9)0.0085 (8)0.0070 (9)
N10.0293 (10)0.0331 (11)0.0421 (12)0.0012 (9)0.0009 (8)0.0012 (9)
N20.0292 (10)0.0293 (10)0.0378 (11)0.0002 (8)0.0033 (8)0.0017 (8)
N30.0379 (12)0.0347 (12)0.0491 (13)0.0077 (10)0.0095 (9)0.0094 (9)
N40.0321 (12)0.0386 (12)0.0435 (13)0.0024 (10)0.0001 (10)0.0054 (10)
C10.0268 (12)0.0324 (13)0.0395 (13)0.0056 (10)0.0006 (10)0.0001 (10)
C20.0307 (13)0.0357 (14)0.0519 (15)0.0003 (11)0.0005 (11)0.0032 (11)
C30.0395 (14)0.0424 (15)0.0494 (15)0.0006 (12)0.0058 (11)0.0098 (12)
C40.0479 (15)0.0436 (15)0.0415 (14)0.0049 (13)0.0014 (11)0.0057 (12)
C50.0403 (14)0.0372 (14)0.0401 (14)0.0034 (11)0.0028 (11)0.0009 (11)
C60.0306 (12)0.0249 (12)0.0397 (13)0.0049 (10)0.0021 (10)0.0008 (10)
C70.0241 (12)0.0301 (13)0.0379 (13)0.0050 (10)0.0010 (9)0.0018 (10)
C80.0302 (12)0.0301 (13)0.0360 (13)0.0063 (10)0.0022 (10)0.0023 (10)
C90.0403 (14)0.0437 (15)0.0388 (14)0.0016 (11)0.0015 (11)0.0033 (11)
C100.0545 (17)0.0534 (17)0.0344 (14)0.0004 (13)0.0033 (11)0.0003 (12)
C110.0562 (16)0.0419 (15)0.0379 (14)0.0036 (13)0.0077 (12)0.0035 (11)
C120.0425 (14)0.0323 (14)0.0433 (14)0.0001 (11)0.0058 (11)0.0002 (11)
C130.0327 (13)0.0290 (13)0.0382 (13)0.0061 (10)0.0016 (10)0.0028 (10)
C140.0314 (13)0.0280 (12)0.0432 (13)0.0016 (10)0.0025 (10)0.0012 (10)
C150.0306 (12)0.0286 (12)0.0372 (13)0.0003 (10)0.0019 (9)0.0004 (10)
C160.0302 (12)0.0287 (13)0.0421 (13)0.0040 (10)0.0001 (10)0.0001 (10)
C170.0317 (13)0.0411 (14)0.0539 (15)0.0051 (11)0.0012 (11)0.0024 (12)
C180.0367 (14)0.0506 (16)0.0554 (16)0.0008 (12)0.0142 (12)0.0053 (13)
C190.0464 (15)0.0485 (16)0.0451 (14)0.0009 (13)0.0114 (12)0.0031 (12)
C200.0363 (13)0.0398 (14)0.0460 (14)0.0013 (11)0.0025 (11)0.0054 (11)
C210.0489 (17)0.055 (2)0.100 (2)0.0015 (14)0.0074 (15)0.0046 (16)
Geometric parameters (Å, º) top
O1—C211.395 (3)C8—C91.402 (3)
O1—H10.95 (3)C9—C101.376 (3)
N1—C71.320 (3)C9—H90.9500
N1—C11.386 (3)C10—C111.389 (3)
N2—C71.384 (3)C10—H100.9500
N2—C61.387 (3)C11—C121.373 (3)
N2—C141.475 (3)C11—H110.9500
N3—C131.386 (3)C12—C131.398 (3)
N3—C141.459 (3)C12—H120.9500
N3—H3a0.93 (2)C14—C151.509 (3)
N4—C161.406 (3)C14—H141.0000
N4—H4a0.95 (2)C15—C201.391 (3)
N4—H4b0.86 (2)C15—C161.400 (3)
C1—C21.397 (3)C16—C171.393 (3)
C1—C61.402 (3)C17—C181.372 (3)
C2—C31.379 (3)C17—H170.9500
C2—H20.9500C18—C191.377 (3)
C3—C41.399 (3)C18—H180.9500
C3—H30.9500C19—C201.386 (3)
C4—C51.379 (3)C19—H190.9500
C4—H40.9500C20—H200.9500
C5—C61.390 (3)C21—H21A0.9800
C5—H50.9500C21—H21B0.9800
C7—C81.441 (3)C21—H21C0.9800
C8—C131.396 (3)
C21—O1—H1109.6 (18)C11—C10—H10120.6
C7—N1—C1105.19 (17)C12—C11—C10121.5 (2)
C7—N2—C6106.81 (17)C12—C11—H11119.3
C7—N2—C14125.65 (17)C10—C11—H11119.3
C6—N2—C14126.49 (17)C11—C12—C13120.0 (2)
C13—N3—C14124.33 (19)C11—C12—H12120.0
C13—N3—H3a116.1 (13)C13—C12—H12120.0
C14—N3—H3a109.7 (13)N3—C13—C8120.48 (19)
C16—N4—H4a112.2 (13)N3—C13—C12120.1 (2)
C16—N4—H4b111.0 (15)C8—C13—C12119.29 (19)
H4a—N4—H4b111 (2)N3—C14—N2108.15 (16)
N1—C1—C2129.15 (19)N3—C14—C15110.02 (17)
N1—C1—C6110.53 (18)N2—C14—C15112.88 (17)
C2—C1—C6120.3 (2)N3—C14—H14108.6
C3—C2—C1117.5 (2)N2—C14—H14108.6
C3—C2—H2121.3C15—C14—H14108.6
C1—C2—H2121.3C20—C15—C16119.16 (19)
C2—C3—C4121.8 (2)C20—C15—C14118.47 (19)
C2—C3—H3119.1C16—C15—C14122.33 (19)
C4—C3—H3119.1C17—C16—C15118.5 (2)
C5—C4—C3121.4 (2)C17—C16—N4119.7 (2)
C5—C4—H4119.3C15—C16—N4121.82 (19)
C3—C4—H4119.3C18—C17—C16121.3 (2)
C4—C5—C6117.1 (2)C18—C17—H17119.3
C4—C5—H5121.4C16—C17—H17119.3
C6—C5—H5121.4C17—C18—C19120.7 (2)
N2—C6—C5133.1 (2)C17—C18—H18119.7
N2—C6—C1104.99 (17)C19—C18—H18119.7
C5—C6—C1121.9 (2)C18—C19—C20118.7 (2)
N1—C7—N2112.39 (18)C18—C19—H19120.7
N1—C7—C8128.31 (19)C20—C19—H19120.7
N2—C7—C8119.27 (19)C19—C20—C15121.5 (2)
C13—C8—C9119.5 (2)C19—C20—H20119.2
C13—C8—C7117.73 (18)C15—C20—H20119.2
C9—C8—C7122.7 (2)O1—C21—H21A109.5
C10—C9—C8120.9 (2)O1—C21—H21B109.5
C10—C9—H9119.6H21A—C21—H21B109.5
C8—C9—H9119.6O1—C21—H21C109.5
C9—C10—C11118.9 (2)H21A—C21—H21C109.5
C9—C10—H10120.6H21B—C21—H21C109.5
C7—N1—C1—C2179.8 (2)C10—C11—C12—C131.1 (3)
C7—N1—C1—C60.4 (2)C14—N3—C13—C821.6 (3)
N1—C1—C2—C3177.9 (2)C14—N3—C13—C12162.73 (19)
C6—C1—C2—C31.9 (3)C9—C8—C13—N3175.3 (2)
C1—C2—C3—C40.5 (3)C7—C8—C13—N37.0 (3)
C2—C3—C4—C50.6 (4)C9—C8—C13—C120.4 (3)
C3—C4—C5—C60.4 (3)C7—C8—C13—C12177.30 (18)
C7—N2—C6—C5176.7 (2)C11—C12—C13—N3176.6 (2)
C14—N2—C6—C58.0 (4)C11—C12—C13—C80.8 (3)
C7—N2—C6—C13.1 (2)C13—N3—C14—N224.8 (3)
C14—N2—C6—C1171.81 (18)C13—N3—C14—C15148.5 (2)
C4—C5—C6—N2179.3 (2)C7—N2—C14—N317.3 (3)
C4—C5—C6—C11.0 (3)C6—N2—C14—N3176.03 (18)
N1—C1—C6—N22.2 (2)C7—N2—C14—C15139.21 (19)
C2—C1—C6—N2178.01 (19)C6—N2—C14—C1554.1 (3)
N1—C1—C6—C5177.61 (18)N3—C14—C15—C20118.8 (2)
C2—C1—C6—C52.2 (3)N2—C14—C15—C20120.3 (2)
C1—N1—C7—N21.7 (2)N3—C14—C15—C1659.1 (3)
C1—N1—C7—C8176.36 (19)N2—C14—C15—C1661.8 (3)
C6—N2—C7—N13.1 (2)C20—C15—C16—C173.7 (3)
C14—N2—C7—N1171.95 (18)C14—C15—C16—C17178.5 (2)
C6—N2—C7—C8175.15 (17)C20—C15—C16—N4178.1 (2)
C14—N2—C7—C86.3 (3)C14—C15—C16—N40.3 (3)
N1—C7—C8—C13178.1 (2)C15—C16—C17—C182.6 (3)
N2—C7—C8—C130.2 (3)N4—C16—C17—C18179.1 (2)
N1—C7—C8—C90.5 (3)C16—C17—C18—C190.3 (4)
N2—C7—C8—C9177.44 (19)C17—C18—C19—C202.1 (4)
C13—C8—C9—C101.4 (3)C18—C19—C20—C150.9 (4)
C7—C8—C9—C10176.1 (2)C16—C15—C20—C192.0 (3)
C8—C9—C10—C111.2 (3)C14—C15—C20—C19179.9 (2)
C9—C10—C11—C120.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3a···N4i0.93 (2)2.13 (2)3.058 (3)174.5 (18)
N4—H4a···O1ii0.95 (2)2.00 (3)2.946 (3)174.4 (19)
N4—H4b···N30.86 (2)2.35 (2)3.006 (3)133.8 (19)
O1—H1···N10.95 (3)1.88 (3)2.814 (2)167 (3)
C14—H14···Cgi1.002.443.408 (2)162
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H16N4·CH4O
Mr344.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.3703 (2), 5.1728 (1), 35.5169 (9)
β (°) 91.3908 (14)
V3)1721.02 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9302, 3136, 2089
Rint0.051
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.08
No. of reflections3136
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PARST (Nardelli, 1995), publCIF (Westrip, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3a···N4i0.93 (2)2.13 (2)3.058 (3)174.5 (18)
N4—H4a···O1ii0.95 (2)2.00 (3)2.946 (3)174.4 (19)
N4—H4b···N30.86 (2)2.35 (2)3.006 (3)133.8 (19)
O1—H1···N10.95 (3)1.88 (3)2.814 (2)167 (3)
C14—H14···Cgi1.002.443.408 (2)162
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCuny, E., Lichtenthaler, F. W. & Moser, A. (1980). Tetrahedron Lett. 21, 3029–3032.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKubicova, L., Sustr, M., Kralova, K., Chobnot, V., Vytlacilova, J., Jahodar, L., Vuorela, P., Machacek, M. & Kaustova, J. (2003). Molecules, 8, 756–769.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNiementowski, S. (1895). J. Prakt. Chem. 51, 546–566.  Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWilliamson, T. A. (1957). Heterocycl. Compd, 6, 331–339.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds