organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(3,4-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 4 June 2009; accepted 12 June 2009; online 17 June 2009)

In the title compound, C10H11Cl2NO, the N—H bond is syn to the 3-methyl substituent in the aromatic ring, similar to that observed in N-(3,4-dimethyl­phen­yl)acetamide and to the 3-chloro substituent in 2,2-dichloro-N-(3,4-dichloro­phen­yl)acetamide, and contrasting with the anti conformation observed for the 3-methyl substituent in 2,2,2-trichloro-N-(3,4-dimethyl­phen­yl)acetamide. On the other hand, it is anti to the C=O bond. An inter­molecular N—H⋯O hydrogen bond links mol­ecules into infinite chains along the b axis.

Related literature

For the preparation of the compound, see: Shilpa & Gowda (2007[Shilpa and Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]). For related structures, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3875.], 2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11.], 2009[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1041.])

[Scheme 1]

Experimental

Crystal data
  • C10H11Cl2NO

  • Mr = 232.10

  • Monoclinic, P 21 /c

  • a = 11.951 (1) Å

  • b = 10.534 (1) Å

  • c = 9.303 (1) Å

  • β = 111.26 (1)°

  • V = 1091.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 299 K

  • 0.28 × 0.20 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.859, Tmax = 0.936

  • 4567 measured reflections

  • 2214 independent reflections

  • 1495 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.187

  • S = 1.20

  • 2214 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (4) 2.07 (4) 2.894 (3) 166 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2007; 2008; 2009), the structure of 2,2-dichloro-N-(3,4-dimethylphenyl)acetamide (I) has been determined. The conformation of the N—H bond in the title compound is syn to the 3-methyl substituent in the aromatic ring [ similar to that observed in N-(3,4-dimethylphenyl)acetamide (Gowda et al., 2008) and to the 3-chloro substituent in 2,2-dichloro-N- (3,4-dichlorophenyl)-acetamide (Gowda et al., 2007)], and contrasting the anti conformation observed for the 3-methyl substituent in 2,2,2-trichloro-N-(3,4-dimethylphenyl)acetamide (Gowda et al., 2009). On the other hand, it is anti to the C=O bond, as observed in other amides. A N—H···O intermolecular hydrogen bond links molecules into infinite chains along the b axis. (Table 1, Fig. 2).

Related literature top

For the preparation of the compound, see: Shilpa & Gowda (2007). For background literature, see: Gowda et al. (2007, 2008, 2009)

Experimental top

Compound (I) was prepared and characterized according to the literature method (Shilpa and Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution of (I).

Refinement top

The H atoms of the methyl groups were positioned with idealized geometry using a riding model [C—H = 0.96 Å]. The other H atoms were located in difference map and their positional parameters were refined freely [N—H = 0.84 (4) Å and C—H = 0.87 (4)–0.97 (4) Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(3,4-dimethylphenyl)acetamide top
Crystal data top
C10H11Cl2NOF(000) = 480
Mr = 232.10Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1463 reflections
a = 11.951 (1) Åθ = 2.6–27.9°
b = 10.534 (1) ŵ = 0.56 mm1
c = 9.303 (1) ÅT = 299 K
β = 111.26 (1)°Prism, colourless
V = 1091.5 (2) Å30.28 × 0.20 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2214 independent reflections
Radiation source: fine-focus sealed tube1495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1413
Tmin = 0.859, Tmax = 0.936k = 136
4567 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2214 reflections(Δ/σ)max = 0.023
144 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C10H11Cl2NOV = 1091.5 (2) Å3
Mr = 232.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.951 (1) ŵ = 0.56 mm1
b = 10.534 (1) ÅT = 299 K
c = 9.303 (1) Å0.28 × 0.20 × 0.12 mm
β = 111.26 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2214 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1495 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.936Rint = 0.020
4567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.32 e Å3
2214 reflectionsΔρmin = 0.37 e Å3
144 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02466 (12)0.39913 (11)0.15433 (13)0.0798 (4)
Cl20.11319 (10)0.15743 (13)0.00649 (16)0.0885 (5)
O10.1417 (2)0.1762 (2)0.2797 (2)0.0521 (7)
N10.1947 (2)0.1901 (3)0.0686 (3)0.0389 (6)
H1N0.173 (3)0.217 (3)0.023 (4)0.047*
C10.3132 (3)0.1393 (3)0.1286 (3)0.0360 (7)
C20.3945 (3)0.1829 (3)0.0644 (3)0.0383 (7)
H20.370 (3)0.240 (3)0.020 (4)0.046*
C30.5126 (3)0.1407 (3)0.1172 (4)0.0400 (7)
C40.5503 (3)0.0526 (3)0.2372 (4)0.0442 (8)
C50.4666 (3)0.0078 (3)0.2959 (4)0.0493 (9)
H50.487 (3)0.050 (4)0.367 (4)0.059*
C60.3489 (3)0.0492 (3)0.2448 (4)0.0439 (8)
H60.295 (3)0.013 (3)0.284 (4)0.053*
C70.1210 (3)0.2076 (3)0.1455 (3)0.0384 (7)
C80.0029 (3)0.2709 (4)0.0500 (4)0.0481 (8)
H80.003 (3)0.302 (4)0.051 (4)0.058*
C90.5985 (3)0.1928 (4)0.0464 (5)0.0580 (10)
H9A0.63720.12380.01530.070*
H9B0.65800.24420.12090.070*
H9C0.55500.24350.04200.070*
C100.6786 (3)0.0066 (4)0.3023 (5)0.0664 (11)
H10A0.73130.07740.34250.080*
H10B0.69860.03360.22210.080*
H10C0.68760.05320.38350.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0971 (9)0.0780 (8)0.0699 (7)0.0313 (6)0.0370 (6)0.0031 (5)
Cl20.0435 (6)0.1112 (10)0.1088 (10)0.0225 (6)0.0251 (6)0.0137 (8)
O10.0568 (15)0.0711 (16)0.0349 (12)0.0059 (12)0.0246 (11)0.0034 (11)
N10.0367 (14)0.0520 (16)0.0303 (13)0.0016 (12)0.0147 (11)0.0027 (12)
C10.0375 (16)0.0395 (16)0.0341 (15)0.0027 (13)0.0167 (13)0.0061 (13)
C20.0411 (18)0.0404 (17)0.0348 (15)0.0007 (13)0.0154 (14)0.0031 (13)
C30.0377 (17)0.0404 (17)0.0442 (17)0.0008 (13)0.0174 (15)0.0070 (14)
C40.0420 (18)0.0405 (17)0.0447 (17)0.0050 (14)0.0092 (15)0.0068 (15)
C50.061 (2)0.0444 (19)0.0425 (18)0.0087 (17)0.0188 (17)0.0064 (16)
C60.051 (2)0.0427 (18)0.0412 (17)0.0029 (15)0.0208 (15)0.0018 (15)
C70.0385 (17)0.0451 (17)0.0352 (16)0.0079 (14)0.0176 (13)0.0056 (14)
C80.0407 (18)0.065 (2)0.0426 (18)0.0003 (16)0.0199 (15)0.0017 (17)
C90.044 (2)0.059 (2)0.082 (3)0.0034 (16)0.036 (2)0.0025 (19)
C100.052 (2)0.068 (3)0.069 (2)0.0146 (19)0.011 (2)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C81.763 (4)C4—C101.510 (5)
Cl2—C81.763 (4)C5—C61.382 (5)
O1—C71.227 (4)C5—H50.87 (4)
N1—C71.334 (4)C6—H60.93 (4)
N1—C11.425 (4)C7—C81.522 (5)
N1—H1N0.84 (4)C8—H80.97 (4)
C1—C61.384 (4)C9—H9A0.9600
C1—C21.390 (4)C9—H9B0.9600
C2—C31.389 (4)C9—H9C0.9600
C2—H20.95 (3)C10—H10A0.9600
C3—C41.395 (5)C10—H10B0.9600
C3—C91.510 (5)C10—H10C0.9600
C4—C51.385 (5)
C7—N1—C1126.7 (3)O1—C7—N1125.4 (3)
C7—N1—H1N118 (2)O1—C7—C8121.0 (3)
C1—N1—H1N115 (2)N1—C7—C8113.6 (3)
C6—C1—C2119.8 (3)C7—C8—Cl1109.5 (2)
C6—C1—N1123.0 (3)C7—C8—Cl2108.9 (3)
C2—C1—N1117.2 (3)Cl1—C8—Cl2110.92 (18)
C3—C2—C1121.4 (3)C7—C8—H8116 (2)
C3—C2—H2118 (2)Cl1—C8—H8108 (2)
C1—C2—H2121 (2)Cl2—C8—H8103 (2)
C2—C3—C4119.2 (3)C3—C9—H9A109.5
C2—C3—C9119.6 (3)C3—C9—H9B109.5
C4—C3—C9121.2 (3)H9A—C9—H9B109.5
C5—C4—C3118.2 (3)C3—C9—H9C109.5
C5—C4—C10120.4 (3)H9A—C9—H9C109.5
C3—C4—C10121.4 (3)H9B—C9—H9C109.5
C6—C5—C4123.2 (3)C4—C10—H10A109.5
C6—C5—H5117 (3)C4—C10—H10B109.5
C4—C5—H5119 (3)H10A—C10—H10B109.5
C5—C6—C1118.2 (3)C4—C10—H10C109.5
C5—C6—H6120 (2)H10A—C10—H10C109.5
C1—C6—H6122 (2)H10B—C10—H10C109.5
C7—N1—C1—C631.6 (5)C10—C4—C5—C6177.8 (3)
C7—N1—C1—C2149.1 (3)C4—C5—C6—C10.4 (5)
C6—C1—C2—C31.8 (5)C2—C1—C6—C51.6 (5)
N1—C1—C2—C3178.8 (3)N1—C1—C6—C5179.1 (3)
C1—C2—C3—C40.0 (5)C1—N1—C7—O14.0 (5)
C1—C2—C3—C9178.6 (3)C1—N1—C7—C8176.7 (3)
C2—C3—C4—C52.0 (5)O1—C7—C8—Cl150.4 (4)
C9—C3—C4—C5179.4 (3)N1—C7—C8—Cl1130.4 (3)
C2—C3—C4—C10178.1 (3)O1—C7—C8—Cl271.0 (3)
C9—C3—C4—C100.5 (5)N1—C7—C8—Cl2108.2 (3)
C3—C4—C5—C62.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (4)2.07 (4)2.894 (3)166 (3)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11Cl2NO
Mr232.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)11.951 (1), 10.534 (1), 9.303 (1)
β (°) 111.26 (1)
V3)1091.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.28 × 0.20 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.859, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
4567, 2214, 1495
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.187, 1.20
No. of reflections2214
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (4)2.07 (4)2.894 (3)166 (3)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for resumption of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa and Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds