organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1541-o1542

Ethyl 2-[(2,6-di­methyl­phen­yl)hydrazono]-3-oxo­butanoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Chemistry, NITTE Meenakshi Institute of Technology, Yelahanka, Bangalore 64, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 May 2009; accepted 4 June 2009; online 10 June 2009)

The title compound, C14H18N2O3, crystallizes with two independent mol­ecules in the asymmetric unit, having closely comparable geometries. Both mol­ecules are essentially planar [maximum deviations from the mean plane of 0.069 (1) and 0.068 (1) Å for the two mol­ecules] and contain an intra­molecular N—H⋯O hydrogen bond which generates a ring with graph-set motif S(6). In the crystal, the mol­ecules are linked into chains along the c axis by inter­molecular C—H⋯O hydrogen bonds, and inter­molecular C—H⋯π inter­actions are also present.

Related literature

For details of the isolation and cytotoxic properties of oxobutanoate derivatives, see: Billington et al. (1979[Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827-836.]); Stanchev et al. (2008[Stanchev, S., Momekov, G., Jensen, F. & Manolov, I. (2008). Eur. J. Med. Chem. 43, 694-706.]). For related structures, see: Alpaslan et al. (2005[Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442-o3444.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Padaki, M., Radhika, & Isloor, A. M. (2009). Acta Cryst. E65, o1029.]). For details of the synthesis, see: Amir & Agarwal, (1997[Amir, M. & Agarwal, R. (1997). J. Indian Chem. Soc. 74, 154-155.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O3

  • Mr = 262.30

  • Monoclinic, P 21 /c

  • a = 6.8072 (1) Å

  • b = 17.4339 (2) Å

  • c = 22.9238 (3) Å

  • β = 90.921 (1)°

  • V = 2720.15 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.43 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.991

  • 38064 measured reflections

  • 6206 independent reflections

  • 4862 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.03

  • 6206 reflections

  • 359 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2BA⋯O2Bi 0.93 2.54 3.2442 (16) 133
N1A—H1NA⋯O1A 0.904 (18) 1.790 (18) 2.5366 (14) 138.3 (15)
N1B—H1NB⋯O1B 0.91 (2) 1.81 (2) 2.5512 (15) 136.2 (16)
C11B—H11CCg1ii 0.96 2.68 3.5516 (15) 150
C11B—H11DCg1iii 0.96 2.60 3.4832 (15) 152
C11A—H11ACg2iv 0.96 2.61 3.4633 (15) 147
C11A—H11BCg2v 0.96 2.65 3.5304 (15) 151
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of oxobutanoates are biologically important due to their interesting properties. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some of the oxobutanoate exhibited cytotoxic property (Stanchev et al., 2008). Crystal structures of ethyl 4-chloro-2-[2-(2-methoxyphenyl)hydrazono]-3-oxobutanoate (Alpaslan et al., 2005) and ethyl 2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate (Fun et al., 2009) have been reported.

There are two independent molecules (A and B) in the asymmetric unit of the title compound (Fig. 1). The benzene rings in the two molecules (C1A–C6A and C1B—C6B) are almost coplanar, forming a dihedral angle of 3.14 (6)°. The mean plane of the part of the oxobutanoate unit, C7A—C12A/O3A in molecule A and C7B—C12B/O3B in molecule B, is slightly twisted from the mean planes of the phenyl rings, (C1A—C6A) and (C1B—C6B), forming dihedral angles of 2.26 (7)° in molecule A and 2.16 (8)° in molecule B respectively. An intramolecular N—H···O hydrogen bond is present in both molecules, generating a ring with graph-set motif S(6).

In the crystal packing (Fig. 2), the molecules are linked into chains along the c axis by intermolecular C—H···O hydrogen bonds. Intramolecular O···N short contacts (2.5362 (13)Å and 2.8224 (14)Å) and intermolecular C—H···π interactions (Table 1) are also observed.

Related literature top

For related literature on oxobutanoate, see: Billington et al. (1979); Stanchev et al. (2008). For related structures, see: Alpaslan et al. (2005); Fun et al. (2009). For synthesis details, see: Amir & Agarwal, (1997). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Experimental top

The title compound was prepared according to a literature procedure (Amir & Agarwal, 1997): 2,6-dimethylaniline (2.26 g, 0.01 mol) was dissolved in dilute hydrochloric acid (22.0 ml, 9.0 ml HCl dissolved in 13.0 ml water) and cooled to 0°C in an ice bath. To this, a cold solution of sodium nitrite (3.2 g, 0.0462 mol in 10.0 ml water) was added, with the temperature of the reaction mixture kept below 5°C. The resulting diazonium salt solution was filtered into a cooled solution of ethylacetoacetate (3.4 ml) and sodium acetate (7.0 g) in ethanol (100 ml). The resulting yellow-orange solid was filtered, washed with ice cold water, dried in air and recrystallized from methanol. Yield 3.65 g (86.5%), m.p. 338–340 K.

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating-group model was used for the methyl groups. H atoms bound to N were located from a Fourier map and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms
[Figure 2] Fig. 2. Packing diagram viewed along the a axis, showing molecular chains along the c axis. Dashed lines indicate hydrogen bonds.
Ethyl 2-[(2,6-dimethylphenyl)hydrazono]-3-oxobutanoate top
Crystal data top
C14H18N2O3F(000) = 1120
Mr = 262.30Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9924 reflections
a = 6.8072 (1) Åθ = 2.9–33.1°
b = 17.4339 (2) ŵ = 0.09 mm1
c = 22.9238 (3) ÅT = 100 K
β = 90.921 (1)°Plate, yellow
V = 2720.15 (6) Å30.43 × 0.22 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
6206 independent reflections
Radiation source: fine-focus sealed tube4862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.962, Tmax = 0.991k = 2222
38064 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.0468P]
where P = (Fo2 + 2Fc2)/3
6206 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H18N2O3V = 2720.15 (6) Å3
Mr = 262.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 6.8072 (1) ŵ = 0.09 mm1
b = 17.4339 (2) ÅT = 100 K
c = 22.9238 (3) Å0.43 × 0.22 × 0.10 mm
β = 90.921 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4862 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.991Rint = 0.037
38064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
6206 reflectionsΔρmin = 0.27 e Å3
359 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat operating at 110.0 (1) K (Cosier & Glazer, 1986).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.40917 (16)0.60365 (5)0.14873 (4)0.0254 (2)
O2A0.40976 (16)0.67847 (5)0.02578 (4)0.0247 (2)
O3A0.40376 (15)0.79917 (5)0.00793 (4)0.0184 (2)
N1A0.40541 (17)0.74634 (6)0.17034 (4)0.0154 (2)
N2A0.40625 (16)0.75908 (6)0.11429 (4)0.0148 (2)
C1A0.4144 (2)0.77921 (8)0.27072 (5)0.0181 (3)
C2A0.4216 (2)0.83300 (8)0.31550 (6)0.0225 (3)
H2AA0.42520.81660.35410.027*
C3A0.4235 (2)0.91073 (8)0.30312 (6)0.0236 (3)
H3AA0.43060.94630.33330.028*
C4A0.4149 (2)0.93537 (8)0.24572 (6)0.0200 (3)
H4AA0.41450.98780.23810.024*
C5A0.40668 (19)0.88417 (8)0.19881 (5)0.0160 (3)
C6A0.40846 (19)0.80554 (8)0.21245 (5)0.0154 (3)
C7A0.4061 (2)0.70016 (7)0.07753 (5)0.0150 (3)
C8A0.4068 (2)0.61935 (8)0.09568 (6)0.0182 (3)
C9A0.4072 (2)0.55506 (8)0.05250 (6)0.0255 (3)
H9AA0.40850.50690.07290.038*
H9AB0.52180.55880.02880.038*
H9AC0.29150.55820.02810.038*
C10A0.4071 (2)0.72277 (8)0.01496 (5)0.0155 (3)
C11A0.4007 (2)0.82543 (8)0.05216 (5)0.0175 (3)
H11A0.28580.80560.07270.021*
H11B0.51720.80800.07210.021*
C12A0.3949 (2)0.91184 (8)0.05037 (6)0.0216 (3)
H12A0.38350.93150.08940.032*
H12B0.51360.93080.03230.032*
H12C0.28400.92830.02820.032*
C13A0.4136 (2)0.69449 (8)0.28431 (6)0.0241 (3)
H13A0.41610.68720.32580.036*
H13B0.52720.67080.26780.036*
H13C0.29690.67150.26800.036*
C14A0.3951 (2)0.91598 (8)0.13753 (6)0.0201 (3)
H14A0.38960.97100.13910.030*
H14B0.27920.89680.11810.030*
H14C0.50920.90040.11650.030*
O1B0.09517 (17)0.08911 (5)0.43092 (4)0.0262 (2)
O2B0.09218 (17)0.21913 (6)0.27668 (4)0.0263 (2)
O3B0.08746 (15)0.32485 (5)0.33244 (4)0.0189 (2)
N1B0.09558 (17)0.22067 (7)0.47965 (4)0.0153 (2)
N2B0.09259 (16)0.25040 (6)0.42748 (4)0.0147 (2)
C1B0.0930 (2)0.22404 (8)0.58338 (5)0.0179 (3)
C2B0.0920 (2)0.26448 (8)0.63570 (6)0.0209 (3)
H2BA0.08950.23770.67080.025*
C3B0.0948 (2)0.34375 (8)0.63647 (6)0.0214 (3)
H3BA0.09380.37000.67180.026*
C4B0.0992 (2)0.38391 (8)0.58425 (6)0.0180 (3)
H4BA0.10140.43720.58530.022*
C5B0.10050 (19)0.34683 (7)0.53016 (5)0.0151 (3)
C6B0.09607 (19)0.26601 (7)0.53072 (5)0.0144 (3)
C7B0.0909 (2)0.20567 (7)0.38054 (5)0.0153 (3)
C8B0.0895 (2)0.12139 (8)0.38275 (6)0.0183 (3)
C9B0.0792 (2)0.07339 (8)0.32851 (6)0.0256 (3)
H9BA0.07340.02010.33900.038*
H9BB0.19380.08250.30560.038*
H9BC0.03620.08680.30620.038*
C10B0.0897 (2)0.24863 (8)0.32454 (5)0.0166 (3)
C11B0.0923 (2)0.37110 (8)0.27969 (5)0.0186 (3)
H11C0.02360.36150.25560.022*
H11D0.20770.35890.25730.022*
C12B0.0979 (2)0.45359 (8)0.29895 (6)0.0229 (3)
H12D0.11180.48620.26550.034*
H12E0.20730.46130.32520.034*
H12F0.02190.46600.31840.034*
C13B0.0906 (2)0.13761 (8)0.58360 (6)0.0260 (3)
H13D0.09220.11940.62310.039*
H13E0.20420.11870.56390.039*
H13F0.02610.11970.56390.039*
C14B0.1078 (2)0.39513 (8)0.47569 (6)0.0192 (3)
H14D0.11330.44840.48620.029*
H14E0.00760.38580.45220.029*
H14F0.22250.38200.45400.029*
H1NA0.403 (3)0.6967 (11)0.1816 (7)0.037 (5)*
H1NB0.099 (3)0.1685 (12)0.4821 (8)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0396 (7)0.0191 (5)0.0174 (5)0.0012 (5)0.0000 (4)0.0023 (4)
O2A0.0393 (7)0.0208 (5)0.0139 (4)0.0009 (5)0.0021 (4)0.0042 (4)
O3A0.0259 (6)0.0170 (5)0.0122 (4)0.0002 (4)0.0006 (4)0.0001 (3)
N1A0.0180 (6)0.0166 (6)0.0115 (5)0.0003 (5)0.0002 (4)0.0003 (4)
N2A0.0126 (6)0.0198 (6)0.0121 (5)0.0001 (5)0.0002 (4)0.0003 (4)
C1A0.0149 (7)0.0250 (7)0.0143 (6)0.0015 (6)0.0001 (5)0.0010 (5)
C2A0.0222 (8)0.0326 (8)0.0127 (6)0.0034 (6)0.0010 (5)0.0031 (5)
C3A0.0222 (8)0.0296 (8)0.0188 (6)0.0041 (6)0.0022 (6)0.0113 (6)
C4A0.0163 (7)0.0193 (7)0.0243 (7)0.0013 (6)0.0000 (6)0.0045 (5)
C5A0.0106 (7)0.0213 (7)0.0161 (6)0.0003 (5)0.0007 (5)0.0018 (5)
C6A0.0111 (7)0.0212 (6)0.0138 (6)0.0004 (5)0.0000 (5)0.0032 (5)
C7A0.0146 (7)0.0171 (6)0.0134 (6)0.0001 (5)0.0004 (5)0.0015 (5)
C8A0.0182 (7)0.0181 (7)0.0182 (6)0.0001 (6)0.0002 (5)0.0009 (5)
C9A0.0394 (10)0.0153 (7)0.0217 (7)0.0014 (6)0.0017 (6)0.0020 (5)
C10A0.0134 (7)0.0180 (6)0.0150 (6)0.0003 (5)0.0004 (5)0.0015 (5)
C11A0.0177 (7)0.0232 (7)0.0114 (6)0.0008 (6)0.0001 (5)0.0015 (5)
C12A0.0207 (8)0.0214 (7)0.0227 (7)0.0001 (6)0.0000 (6)0.0042 (5)
C13A0.0314 (9)0.0275 (8)0.0133 (6)0.0002 (7)0.0006 (6)0.0023 (5)
C14A0.0229 (8)0.0184 (7)0.0192 (6)0.0008 (6)0.0017 (6)0.0004 (5)
O1B0.0401 (7)0.0182 (5)0.0203 (5)0.0010 (5)0.0003 (5)0.0004 (4)
O2B0.0405 (7)0.0268 (5)0.0115 (4)0.0002 (5)0.0009 (4)0.0036 (4)
O3B0.0263 (6)0.0182 (5)0.0123 (4)0.0005 (4)0.0009 (4)0.0017 (3)
N1B0.0182 (6)0.0150 (5)0.0128 (5)0.0010 (5)0.0004 (4)0.0006 (4)
N2B0.0137 (6)0.0188 (5)0.0115 (5)0.0001 (5)0.0001 (4)0.0007 (4)
C1B0.0168 (7)0.0214 (7)0.0154 (6)0.0011 (6)0.0002 (5)0.0023 (5)
C2B0.0219 (8)0.0293 (8)0.0115 (6)0.0015 (6)0.0003 (5)0.0024 (5)
C3B0.0203 (8)0.0308 (8)0.0130 (6)0.0021 (6)0.0006 (5)0.0061 (5)
C4B0.0152 (7)0.0190 (7)0.0198 (6)0.0013 (5)0.0008 (5)0.0043 (5)
C5B0.0118 (7)0.0183 (6)0.0151 (6)0.0011 (5)0.0004 (5)0.0001 (5)
C6B0.0124 (7)0.0184 (6)0.0122 (6)0.0008 (5)0.0001 (5)0.0011 (5)
C7B0.0138 (7)0.0182 (6)0.0139 (6)0.0011 (5)0.0004 (5)0.0012 (5)
C8B0.0175 (7)0.0194 (7)0.0181 (6)0.0011 (6)0.0006 (5)0.0026 (5)
C9B0.0348 (9)0.0198 (7)0.0220 (7)0.0030 (6)0.0005 (6)0.0069 (6)
C10B0.0142 (7)0.0209 (7)0.0148 (6)0.0007 (5)0.0001 (5)0.0006 (5)
C11B0.0170 (7)0.0257 (7)0.0132 (6)0.0003 (6)0.0002 (5)0.0056 (5)
C12B0.0212 (8)0.0237 (7)0.0238 (7)0.0006 (6)0.0011 (6)0.0060 (5)
C13B0.0384 (10)0.0216 (7)0.0179 (6)0.0014 (7)0.0005 (6)0.0058 (5)
C14B0.0238 (8)0.0160 (6)0.0179 (6)0.0005 (6)0.0007 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1A—C8A1.2463 (15)O1B—C8B1.2395 (16)
O2A—C10A1.2123 (15)O2B—C10B1.2120 (15)
O3A—C10A1.3419 (16)O3B—C10B1.3413 (16)
O3A—C11A1.4514 (14)O3B—C11B1.4542 (15)
N1A—N2A1.3040 (14)N1B—N2B1.3033 (14)
N1A—C6A1.4132 (16)N1B—C6B1.4125 (15)
N1A—H1NA0.904 (18)N1B—H1NB0.91 (2)
N2A—C7A1.3287 (16)N2B—C7B1.3287 (16)
C1A—C2A1.3905 (18)C1B—C2B1.3914 (18)
C1A—C6A1.4126 (17)C1B—C6B1.4121 (17)
C1A—C13A1.5095 (19)C1B—C13B1.5069 (19)
C2A—C3A1.385 (2)C2B—C3B1.382 (2)
C2A—H2AA0.930C2B—H2BA0.930
C3A—C4A1.3845 (19)C3B—C4B1.3874 (18)
C3A—H3AA0.930C3B—H3BA0.930
C4A—C5A1.3979 (18)C4B—C5B1.3985 (17)
C4A—H4AA0.930C4B—H4BA0.930
C5A—C6A1.4060 (18)C5B—C6B1.4095 (18)
C5A—C14A1.5112 (17)C5B—C14B1.5076 (17)
C7A—C8A1.4690 (18)C7B—C8B1.4702 (18)
C7A—C10A1.4876 (17)C7B—C10B1.4864 (17)
C8A—C9A1.4953 (18)C8B—C9B1.4994 (18)
C9A—H9AA0.960C9B—H9BA0.960
C9A—H9AB0.960C9B—H9BB0.960
C9A—H9AC0.960C9B—H9BC0.960
C11A—C12A1.5075 (18)C11B—C12B1.5046 (19)
C11A—H11A0.970C11B—H11C0.970
C11A—H11B0.970C11B—H11D0.970
C12A—H12A0.960C12B—H12D0.960
C12A—H12B0.960C12B—H12E0.960
C12A—H12C0.960C12B—H12F0.960
C13A—H13A0.960C13B—H13D0.960
C13A—H13B0.960C13B—H13E0.960
C13A—H13C0.960C13B—H13F0.960
C14A—H14A0.960C14B—H14D0.960
C14A—H14B0.960C14B—H14E0.960
C14A—H14C0.960C14B—H14F0.960
C10A—O3A—C11A115.28 (9)C10B—O3B—C11B115.88 (10)
N2A—N1A—C6A123.25 (11)N2B—N1B—C6B122.54 (11)
N2A—N1A—H1NA116.5 (11)N2B—N1B—H1NB116.9 (12)
C6A—N1A—H1NA120.3 (11)C6B—N1B—H1NB120.5 (12)
N1A—N2A—C7A119.54 (11)N1B—N2B—C7B120.63 (11)
C2A—C1A—C6A118.63 (13)C2B—C1B—C6B118.34 (12)
C2A—C1A—C13A120.51 (12)C2B—C1B—C13B120.25 (12)
C6A—C1A—C13A120.86 (12)C6B—C1B—C13B121.42 (12)
C3A—C2A—C1A120.60 (13)C3B—C2B—C1B121.15 (12)
C3A—C2A—H2AA119.7C3B—C2B—H2BA119.4
C1A—C2A—H2AA119.7C1B—C2B—H2BA119.4
C4A—C3A—C2A119.87 (12)C2B—C3B—C4B119.61 (12)
C4A—C3A—H3AA120.1C2B—C3B—H3BA120.2
C2A—C3A—H3AA120.1C4B—C3B—H3BA120.2
C3A—C4A—C5A122.25 (13)C3B—C4B—C5B122.15 (12)
C3A—C4A—H4AA118.9C3B—C4B—H4BA118.9
C5A—C4A—H4AA118.9C5B—C4B—H4BA118.9
C4A—C5A—C6A116.83 (12)C4B—C5B—C6B116.98 (11)
C4A—C5A—C14A118.80 (12)C4B—C5B—C14B118.48 (11)
C6A—C5A—C14A124.37 (11)C6B—C5B—C14B124.54 (11)
C5A—C6A—C1A121.81 (11)C5B—C6B—C1B121.76 (11)
C5A—C6A—N1A124.07 (11)C5B—C6B—N1B123.48 (11)
C1A—C6A—N1A114.11 (12)C1B—C6B—N1B114.76 (11)
N2A—C7A—C8A124.19 (11)N2B—C7B—C8B123.97 (11)
N2A—C7A—C10A113.99 (11)N2B—C7B—C10B113.80 (11)
C8A—C7A—C10A121.82 (11)C8B—C7B—C10B122.23 (11)
O1A—C8A—C7A119.14 (11)O1B—C8B—C7B118.96 (11)
O1A—C8A—C9A118.76 (12)O1B—C8B—C9B119.06 (12)
C7A—C8A—C9A122.09 (11)C7B—C8B—C9B121.98 (12)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
O2A—C10A—O3A122.70 (11)O2B—C10B—O3B122.89 (12)
O2A—C10A—C7A125.05 (12)O2B—C10B—C7B124.62 (12)
O3A—C10A—C7A112.25 (10)O3B—C10B—C7B112.48 (10)
O3A—C11A—C12A106.82 (10)O3B—C11B—C12B106.66 (10)
O3A—C11A—H11A110.4O3B—C11B—H11C110.4
C12A—C11A—H11A110.4C12B—C11B—H11C110.4
O3A—C11A—H11B110.4O3B—C11B—H11D110.4
C12A—C11A—H11B110.4C12B—C11B—H11D110.4
H11A—C11A—H11B108.6H11C—C11B—H11D108.6
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C1A—C13A—H13A109.5C1B—C13B—H13D109.5
C1A—C13A—H13B109.5C1B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C1A—C13A—H13C109.5C1B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C5A—C14A—H14A109.5C5B—C14B—H14D109.5
C5A—C14A—H14B109.5C5B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C5A—C14A—H14C109.5C5B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C6A—N1A—N2A—C7A179.03 (12)C6B—N1B—N2B—C7B179.54 (12)
C6A—C1A—C2A—C3A0.2 (2)C6B—C1B—C2B—C3B0.2 (2)
C13A—C1A—C2A—C3A179.61 (14)C13B—C1B—C2B—C3B179.80 (14)
C1A—C2A—C3A—C4A1.1 (2)C1B—C2B—C3B—C4B0.2 (2)
C2A—C3A—C4A—C5A0.8 (2)C2B—C3B—C4B—C5B0.1 (2)
C3A—C4A—C5A—C6A0.3 (2)C3B—C4B—C5B—C6B0.3 (2)
C3A—C4A—C5A—C14A179.28 (13)C3B—C4B—C5B—C14B179.27 (13)
C4A—C5A—C6A—C1A1.2 (2)C4B—C5B—C6B—C1B0.78 (19)
C14A—C5A—C6A—C1A178.33 (13)C14B—C5B—C6B—C1B178.79 (13)
C4A—C5A—C6A—N1A178.53 (12)C4B—C5B—C6B—N1B179.62 (12)
C14A—C5A—C6A—N1A1.9 (2)C14B—C5B—C6B—N1B0.8 (2)
C2A—C1A—C6A—C5A1.0 (2)C2B—C1B—C6B—C5B0.7 (2)
C13A—C1A—C6A—C5A179.22 (13)C13B—C1B—C6B—C5B179.29 (13)
C2A—C1A—C6A—N1A178.77 (12)C2B—C1B—C6B—N1B179.62 (12)
C13A—C1A—C6A—N1A1.02 (19)C13B—C1B—C6B—N1B0.34 (19)
N2A—N1A—C6A—C5A2.0 (2)N2B—N1B—C6B—C5B2.4 (2)
N2A—N1A—C6A—C1A177.74 (12)N2B—N1B—C6B—C1B178.02 (12)
N1A—N2A—C7A—C8A0.6 (2)N1B—N2B—C7B—C8B0.9 (2)
N1A—N2A—C7A—C10A179.99 (11)N1B—N2B—C7B—C10B179.37 (11)
N2A—C7A—C8A—O1A0.6 (2)N2B—C7B—C8B—O1B1.9 (2)
C10A—C7A—C8A—O1A178.82 (13)C10B—C7B—C8B—O1B178.34 (13)
N2A—C7A—C8A—C9A179.80 (13)N2B—C7B—C8B—C9B177.42 (13)
C10A—C7A—C8A—C9A0.4 (2)C10B—C7B—C8B—C9B2.3 (2)
C11A—O3A—C10A—O2A0.89 (19)C11B—O3B—C10B—O2B1.24 (19)
C11A—O3A—C10A—C7A178.87 (11)C11B—O3B—C10B—C7B178.20 (11)
N2A—C7A—C10A—O2A178.94 (13)N2B—C7B—C10B—O2B178.42 (13)
C8A—C7A—C10A—O2A0.5 (2)C8B—C7B—C10B—O2B1.8 (2)
N2A—C7A—C10A—O3A1.31 (16)N2B—C7B—C10B—O3B1.00 (17)
C8A—C7A—C10A—O3A179.24 (12)C8B—C7B—C10B—O3B178.78 (12)
C10A—O3A—C11A—C12A179.37 (11)C10B—O3B—C11B—C12B177.50 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2BA···O2Bi0.932.543.2442 (16)133
N1A—H1NA···O1A0.904 (18)1.790 (18)2.5366 (14)138.3 (15)
N1B—H1NB···O1B0.91 (2)1.81 (2)2.5512 (15)136.2 (16)
C11B—H11C···Cg1ii0.962.683.5516 (15)150
C11B—H11D···Cg1iii0.962.603.4832 (15)152
C11A—H11A···Cg2iv0.962.613.4633 (15)147
C11A—H11B···Cg2v0.962.653.5304 (15)151
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N2O3
Mr262.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.8072 (1), 17.4339 (2), 22.9238 (3)
β (°) 90.921 (1)
V3)2720.15 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
38064, 6206, 4862
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.03
No. of reflections6206
No. of parameters359
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2BA···O2Bi0.932.543.2442 (16)132.6
N1A—H1NA···O1A0.904 (18)1.790 (18)2.5366 (14)138.3 (15)
N1B—H1NB···O1B0.91 (2)1.81 (2)2.5512 (15)136.2 (16)
C11B—H11C···Cg1ii0.962.683.5516 (15)150
C11B—H11D···Cg1iii0.962.603.4832 (15)152
C11A—H11A···Cg2iv0.962.613.4633 (15)147
C11A—H11B···Cg2v0.962.653.5304 (15)151
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

References

First citationAlpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442–o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmir, M. & Agarwal, R. (1997). J. Indian Chem. Soc. 74, 154–155.  CAS Google Scholar
First citationBillington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827–836.  CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Padaki, M., Radhika, & Isloor, A. M. (2009). Acta Cryst. E65, o1029.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanchev, S., Momekov, G., Jensen, F. & Manolov, I. (2008). Eur. J. Med. Chem. 43, 694–706.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1541-o1542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds