metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(6-meth­­oxy-2-{[tris­­(hy­droxy­meth­yl)methyl-κO]imino­meth­yl}phenolato-κ2N,O1)nickel(II) dihydrate

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: zhoutian016@163.com

(Received 19 May 2009; accepted 10 June 2009; online 17 June 2009)

In the title compound, [Ni(C12H16NO5)2]·2H2O, the NiII atom is coordinated by four O atoms and two N atoms from the two 6-meth­oxy-2-{[tris­(hydroxy­meth­yl)meth­yl]imino­meth­yl}phenolate ligands in a distorted octa­hedral coordination geometry. O—H⋯O hydrogen bonds link the complexes and uncoordinated water mol­ecules into two-dimensional networks parallel to (001).

Related literature

For the applications of Schiff-base complexes, see: Kritagawa & Kondo (1998[Kritagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739-1753.]); Zhang et al. (1998[Zhang, Y., Jianmin, L., Min, Z., Wang, Q. & Wu, X. (1998). Chem. Lett., 27, 1051-1052.]); Yaghi et al. (1996[Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc., 118, 9096-9101.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H16NO5)2]·2H2O

  • Mr = 603.26

  • Monoclinic, P 21 /c

  • a = 12.0142 (10) Å

  • b = 10.9876 (10) Å

  • c = 20.324 (2) Å

  • β = 97.501 (1)°

  • V = 2660.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.44 × 0.29 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.721, Tmax = 0.857

  • 13321 measured reflections

  • 4933 independent reflections

  • 4436 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.00

  • 4933 reflections

  • 376 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.85 2.670 (3) 179
O2—H2A⋯O11ii 0.82 1.91 2.666 (3) 152
O2—H2A⋯O12ii 0.82 2.37 3.010 (3) 135
O5—H5⋯O6iii 0.82 1.87 2.691 (3) 174
O6—H6⋯O3iv 0.82 1.89 2.671 (2) 159
O10—H10A⋯O5iv 0.82 (3) 1.93 (3) 2.751 (3) 175 (5)
O8—H1AA⋯O7i 0.82 (2) 1.972 (11) 2.775 (4) 166 (4)
O4—H4AA⋯O8v 0.82 (3) 1.88 (4) 2.686 (3) 170 (4)
O8—H1BB⋯O2vi 0.82 (3) 2.16 (3) 2.962 (3) 167 (4)
O7—H2BB⋯O9ii 0.82 (2) 2.055 (10) 2.862 (4) 168 (4)
O7—H2AA⋯O1 0.81 (3) 1.84 (3) 2.641 (3) 169 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x, y-1, z; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polymeric metal complexes containing Schiff-base ligands are of interest because of their useful chemical or physical properties (Zhang et al., 1998; Kritagawa & Kondo, 1998; Yaghi et al., 1996). Herein, we report a new crystal structure containing the Schiff-base ligand 6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenol (denoted HL).

As shown in Figure 1, the asymmetric unit of the complex comprises two L- ligands, one NiII atom and two lattice water molecules. The NiII atom is hexa-coordinated by four O atoms and two N atoms from the two L- ligands, giving a distorted octahedral coordination geometry. The Ni—O and Ni—N bond distances are within normal ranges. The [NiL2] complexes form an extensive network of O—H···O interactions involving the lattice water molecules, giving 2-D networks parallel to the (001) planes (Fig. 2).

Related literature top

For the applications of Schiff-base complexes, see: Kritagawa & Kondo (1998); Zhang et al. (1998); Yaghi et al. (1996).

Experimental top

The complex was synthesized by refluxing HL (0.050 g, 0.2 mmol) and NiCl2.6H2O (0.048 g, 0.2 mmol) in the mixed solution (CH3OH:H2O = 4:1) until all solid was dissolved. The solution was then cooled to room temperature and filtered. Green crystals for X-ray diffraction analysis were obtained by slow evaporation of the filtrate. Elemental analysis calculated: C 47.74, H 5.97, N 4.64 %; found: C 47.69, H 5.51, N 4.58 %.

Refinement top

All H atoms bound to C were placed geometrically with C—H = 0.93 (aromatic H), 0.96 (methyl H) or 0.97 Å (methylene H) and refined as riding with Uiso(H) = 1.2Ueq(C) (aromatic and methylene H) or 1.5Ueq(C) (methyl H). The H atoms of the water molecule were located from difference density maps and refined with distance restraints of d(H···H) = 1.38 (2) Å, d(O—H) = 0.82 (1) Å. The H atoms of the hydroxyl groups were placed geometrically with O—H = 0.82 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Packing diagram viewed approximately along the c axis, showing the complex network of O—H···O hydrogen bonds (dashed lines).
Bis(6-methoxy-2-{[tris(hydroxymethyl)methyl- κO]iminomethyl}phenolato-κ2N,O1)nickel(II) dihydrate top
Crystal data top
[Ni(C12H16NO5)2]·2H2OF(000) = 1272
Mr = 603.26Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4933 reflections
a = 12.0142 (10) Åθ = 2.0–25.5°
b = 10.9876 (10) ŵ = 0.80 mm1
c = 20.324 (2) ÅT = 293 K
β = 97.501 (1)°Block, green
V = 2660.0 (4) Å30.44 × 0.29 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4933 independent reflections
Radiation source: fine-focus sealed tube4436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1411
Tmin = 0.721, Tmax = 0.857k = 1313
13321 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.069P)2 + 2.387P]
where P = (Fo2 + 2Fc2)/3
4933 reflections(Δ/σ)max = 0.032
376 parametersΔρmax = 0.38 e Å3
8 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(C12H16NO5)2]·2H2OV = 2660.0 (4) Å3
Mr = 603.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0142 (10) ŵ = 0.80 mm1
b = 10.9876 (10) ÅT = 293 K
c = 20.324 (2) Å0.44 × 0.29 × 0.20 mm
β = 97.501 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4933 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4436 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.857Rint = 0.043
13321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0398 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.38 e Å3
4933 reflectionsΔρmin = 0.44 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9480 (2)0.2452 (2)0.86933 (11)0.0233 (5)
C21.0283 (2)0.2677 (3)0.92480 (12)0.0311 (6)
H21.10230.24330.92420.037*
C30.9989 (3)0.3243 (3)0.97874 (13)0.0386 (7)
H31.05240.33901.01530.046*
C40.8871 (3)0.3610 (3)0.97952 (14)0.0391 (7)
H40.86710.40031.01680.047*
C50.8073 (2)0.3402 (2)0.92655 (13)0.0307 (6)
C60.8335 (2)0.2797 (2)0.86879 (11)0.0228 (5)
C70.6684 (2)0.3019 (2)0.62935 (12)0.0231 (5)
C80.6897 (3)0.3685 (2)0.57276 (13)0.0325 (6)
C90.6097 (3)0.3783 (3)0.51866 (15)0.0468 (8)
H90.62510.42380.48230.056*
C100.5051 (3)0.3210 (3)0.51678 (16)0.0515 (9)
H100.45090.33070.48010.062*
C110.4834 (3)0.2522 (3)0.56833 (15)0.0404 (7)
H110.41430.21360.56680.048*
C120.5639 (2)0.2379 (2)0.62428 (12)0.0269 (5)
C130.8357 (4)0.4634 (4)0.52069 (18)0.0638 (11)
H13A0.83000.39930.48830.096*
H13B0.91280.48720.53120.096*
H13C0.79210.53190.50300.096*
C140.5356 (2)0.1521 (2)0.67266 (13)0.0265 (5)
H140.46210.12380.66790.032*
C150.5631 (2)0.0166 (2)0.76457 (13)0.0264 (5)
C160.6607 (2)0.0731 (2)0.77949 (14)0.0312 (6)
H16A0.64540.12910.81410.037*
H16B0.66940.11990.74000.037*
C170.4562 (2)0.0513 (3)0.73736 (15)0.0344 (6)
H17A0.43810.11040.76980.041*
H17B0.39430.00590.72960.041*
C180.5411 (3)0.0770 (3)0.82811 (14)0.0370 (6)
H18A0.52260.01560.85920.044*
H18B0.60830.11900.84780.044*
C190.6632 (3)0.4399 (3)0.97696 (15)0.0488 (8)
H19A0.67550.39081.01630.073*
H19B0.58500.46030.96780.073*
H19C0.70680.51310.98350.073*
C200.9938 (2)0.1930 (2)0.81394 (12)0.0228 (5)
H201.07120.18230.81820.027*
C210.9989 (2)0.1161 (2)0.70684 (12)0.0229 (5)
C220.9245 (2)0.0216 (2)0.66780 (12)0.0260 (5)
H22A0.95020.00800.62510.031*
H22B0.92900.05490.69180.031*
C231.0163 (2)0.2240 (2)0.66147 (12)0.0276 (5)
H23A1.06220.19770.62820.033*
H23B0.94410.24900.63860.033*
C241.1143 (2)0.0572 (2)0.72948 (13)0.0282 (5)
H24A1.14280.01930.69190.034*
H24B1.16750.11890.74750.034*
N10.93758 (17)0.16035 (17)0.75960 (9)0.0199 (4)
N20.60221 (17)0.11097 (18)0.72161 (10)0.0228 (4)
Ni10.76754 (2)0.15968 (3)0.742167 (14)0.01963 (12)
O10.4508 (2)0.1618 (2)0.81592 (14)0.0531 (6)
H10.47590.23130.81780.080*
O20.46970 (17)0.11101 (19)0.67775 (11)0.0418 (5)
H2A0.40790.12550.65710.063*
O30.74281 (14)0.30277 (15)0.68125 (8)0.0233 (4)
O40.81045 (15)0.06375 (17)0.65815 (9)0.0301 (4)
O51.06823 (16)0.32512 (17)0.69579 (10)0.0341 (4)
H51.02000.37340.70420.051*
O61.10157 (16)0.03050 (19)0.77806 (11)0.0399 (5)
H61.15960.07020.78590.060*
O70.2701 (2)0.1557 (2)0.87725 (16)0.0584 (7)
O80.6646 (2)0.8964 (2)0.60240 (12)0.0524 (6)
O90.79479 (19)0.4219 (2)0.57859 (10)0.0440 (5)
O100.76155 (15)0.00657 (17)0.80057 (10)0.0311 (4)
O110.69602 (18)0.3743 (2)0.92284 (10)0.0446 (5)
O120.75320 (14)0.26451 (16)0.82089 (8)0.0258 (4)
H10A0.815 (2)0.054 (3)0.803 (2)0.080*
H1AA0.690 (3)0.8269 (14)0.603 (2)0.080*
H2AA0.329 (2)0.151 (3)0.862 (2)0.080*
H4AA0.768 (3)0.008 (3)0.645 (2)0.080*
H1BB0.605 (2)0.902 (3)0.618 (2)0.080*
H2BB0.243 (3)0.0900 (16)0.886 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (12)0.0218 (12)0.0198 (11)0.0011 (10)0.0026 (9)0.0003 (9)
C20.0308 (13)0.0363 (15)0.0247 (13)0.0002 (12)0.0020 (10)0.0005 (11)
C30.0432 (17)0.0480 (18)0.0220 (13)0.0017 (14)0.0059 (12)0.0053 (12)
C40.0487 (18)0.0460 (17)0.0222 (13)0.0024 (14)0.0036 (12)0.0104 (12)
C50.0367 (15)0.0310 (14)0.0247 (13)0.0056 (11)0.0052 (11)0.0026 (10)
C60.0300 (13)0.0203 (11)0.0177 (11)0.0016 (10)0.0022 (9)0.0016 (9)
C70.0293 (13)0.0164 (11)0.0232 (12)0.0003 (10)0.0022 (10)0.0012 (9)
C80.0461 (16)0.0242 (13)0.0265 (13)0.0038 (12)0.0026 (11)0.0015 (10)
C90.073 (2)0.0381 (16)0.0257 (14)0.0042 (16)0.0061 (14)0.0096 (12)
C100.065 (2)0.0432 (18)0.0374 (17)0.0052 (16)0.0254 (16)0.0094 (14)
C110.0407 (16)0.0311 (15)0.0442 (17)0.0031 (12)0.0144 (13)0.0020 (12)
C120.0294 (13)0.0217 (12)0.0276 (12)0.0018 (10)0.0035 (10)0.0005 (10)
C130.094 (3)0.053 (2)0.052 (2)0.018 (2)0.040 (2)0.0003 (17)
C140.0231 (12)0.0206 (12)0.0346 (14)0.0017 (10)0.0015 (10)0.0026 (10)
C150.0262 (12)0.0206 (12)0.0333 (13)0.0046 (10)0.0068 (10)0.0036 (10)
C160.0318 (14)0.0220 (13)0.0391 (14)0.0031 (11)0.0022 (11)0.0055 (11)
C170.0268 (13)0.0267 (14)0.0494 (17)0.0059 (11)0.0037 (12)0.0054 (12)
C180.0429 (16)0.0336 (15)0.0375 (15)0.0038 (13)0.0170 (12)0.0044 (12)
C190.056 (2)0.057 (2)0.0362 (16)0.0188 (16)0.0167 (14)0.0120 (15)
C200.0223 (12)0.0202 (11)0.0253 (12)0.0011 (10)0.0011 (9)0.0006 (9)
C210.0248 (12)0.0220 (12)0.0225 (11)0.0003 (10)0.0056 (9)0.0032 (9)
C220.0307 (13)0.0203 (12)0.0265 (12)0.0007 (10)0.0022 (10)0.0055 (10)
C230.0331 (13)0.0269 (13)0.0239 (12)0.0017 (11)0.0080 (10)0.0004 (10)
C240.0267 (13)0.0261 (13)0.0322 (13)0.0031 (10)0.0054 (10)0.0007 (10)
N10.0236 (10)0.0174 (10)0.0190 (10)0.0009 (8)0.0044 (8)0.0006 (7)
N20.0221 (10)0.0186 (10)0.0276 (11)0.0009 (8)0.0028 (8)0.0005 (8)
Ni10.02003 (18)0.01864 (18)0.01981 (18)0.00071 (11)0.00109 (12)0.00067 (11)
O10.0484 (14)0.0359 (12)0.0817 (18)0.0007 (10)0.0338 (13)0.0071 (12)
O20.0364 (11)0.0328 (11)0.0528 (13)0.0080 (9)0.0074 (9)0.0070 (10)
O30.0269 (9)0.0198 (8)0.0223 (8)0.0042 (7)0.0004 (7)0.0010 (7)
O40.0286 (9)0.0285 (10)0.0319 (10)0.0018 (8)0.0014 (7)0.0101 (8)
O50.0351 (11)0.0263 (10)0.0421 (11)0.0068 (8)0.0096 (9)0.0016 (8)
O60.0309 (10)0.0326 (11)0.0560 (13)0.0111 (9)0.0046 (9)0.0139 (9)
O70.0449 (14)0.0510 (15)0.0836 (19)0.0014 (11)0.0248 (13)0.0003 (13)
O80.0615 (16)0.0469 (14)0.0485 (13)0.0191 (12)0.0057 (11)0.0043 (11)
O90.0523 (13)0.0463 (12)0.0351 (11)0.0156 (10)0.0125 (9)0.0085 (9)
O100.0281 (9)0.0250 (9)0.0390 (10)0.0007 (8)0.0004 (8)0.0041 (8)
O110.0417 (12)0.0646 (14)0.0275 (10)0.0182 (11)0.0046 (9)0.0162 (10)
O120.0246 (9)0.0298 (9)0.0222 (8)0.0023 (7)0.0008 (7)0.0059 (7)
Geometric parameters (Å, º) top
C1—C21.406 (3)C17—H17B0.970
C1—C61.426 (4)C18—O11.427 (4)
C1—C201.435 (3)C18—H18A0.970
C2—C31.347 (4)C18—H18B0.970
C2—H20.930C19—O111.414 (3)
C3—C41.405 (5)C19—H19A0.960
C3—H30.930C19—H19B0.960
C4—C51.364 (4)C19—H19C0.960
C4—H40.930C20—N11.269 (3)
C5—O111.381 (3)C20—H200.930
C5—C61.419 (3)C21—N11.461 (3)
C6—O121.289 (3)C21—C221.524 (3)
C7—O31.290 (3)C21—C231.533 (3)
C7—C81.414 (4)C21—C241.545 (3)
C7—C121.431 (4)C22—O41.435 (3)
C8—C91.366 (4)C22—H22A0.970
C8—O91.384 (4)C22—H22B0.970
C9—C101.402 (5)C23—O51.413 (3)
C9—H90.930C23—H23A0.970
C10—C111.345 (5)C23—H23B0.970
C10—H100.930C24—O61.402 (3)
C11—C121.402 (4)C24—H24A0.970
C11—H110.930C24—H24B0.970
C12—C141.435 (4)N1—Ni12.027 (2)
C13—O91.409 (4)N2—Ni12.047 (2)
C13—H13A0.960Ni1—O121.9971 (17)
C13—H13B0.960Ni1—O31.9993 (17)
C13—H13C0.960Ni1—O42.1266 (18)
C14—N21.275 (3)Ni1—O102.1847 (19)
C14—H140.930O1—H10.820
C15—N21.471 (3)O2—H2A0.820
C15—C181.506 (4)O4—H4AA0.82 (3)
C15—C171.526 (3)O5—H50.820
C15—C161.531 (4)O6—H60.820
C16—O101.432 (3)O7—H2AA0.81 (3)
C16—H16A0.970O7—H2BB0.82 (2)
C16—H16B0.970O8—H1AA0.82 (2)
C17—O21.406 (4)O8—H1BB0.82 (3)
C17—H17A0.970O10—H10A0.82 (3)
C2—C1—C6121.3 (2)O11—C19—H19B109.5
C2—C1—C20114.0 (2)H19A—C19—H19B109.5
C6—C1—C20124.6 (2)O11—C19—H19C109.5
C3—C2—C1120.6 (3)H19A—C19—H19C109.5
C3—C2—H2119.7H19B—C19—H19C109.5
C1—C2—H2119.7N1—C20—C1125.5 (2)
C2—C3—C4119.6 (3)N1—C20—H20117.2
C2—C3—H3120.2C1—C20—H20117.2
C4—C3—H3120.2N1—C21—C22106.9 (2)
C5—C4—C3121.2 (3)N1—C21—C23107.81 (19)
C5—C4—H4119.4C22—C21—C23109.3 (2)
C3—C4—H4119.4N1—C21—C24116.1 (2)
C4—C5—O11125.0 (2)C22—C21—C24108.2 (2)
C4—C5—C6121.5 (3)C23—C21—C24108.4 (2)
O11—C5—C6113.5 (2)O4—C22—C21109.65 (19)
O12—C6—C5117.4 (2)O4—C22—H22A109.7
O12—C6—C1126.7 (2)C21—C22—H22A109.7
C5—C6—C1115.9 (2)O4—C22—H22B109.7
O3—C7—C8118.8 (2)C21—C22—H22B109.7
O3—C7—C12124.8 (2)H22A—C22—H22B108.2
C8—C7—C12116.4 (2)O5—C23—C21113.4 (2)
C9—C8—O9125.0 (3)O5—C23—H23A108.9
C9—C8—C7120.8 (3)C21—C23—H23A108.9
O9—C8—C7114.2 (2)O5—C23—H23B108.9
C8—C9—C10121.3 (3)C21—C23—H23B108.9
C8—C9—H9119.3H23A—C23—H23B107.7
C10—C9—H9119.3O6—C24—C21108.7 (2)
C11—C10—C9119.7 (3)O6—C24—H24A109.9
C11—C10—H10120.2C21—C24—H24A109.9
C9—C10—H10120.2O6—C24—H24B109.9
C10—C11—C12120.8 (3)C21—C24—H24B109.9
C10—C11—H11119.6H24A—C24—H24B108.3
C12—C11—H11119.6C20—N1—C21118.1 (2)
C11—C12—C7120.6 (2)C20—N1—Ni1124.24 (17)
C11—C12—C14115.5 (2)C21—N1—Ni1117.62 (15)
C7—C12—C14123.9 (2)C14—N2—C15119.8 (2)
O9—C13—H13A109.5C14—N2—Ni1124.04 (18)
O9—C13—H13B109.5C15—N2—Ni1116.08 (15)
H13A—C13—H13B109.5O12—Ni1—O391.21 (7)
O9—C13—H13C109.5O12—Ni1—N192.77 (7)
H13A—C13—H13C109.5O3—Ni1—N199.80 (7)
H13B—C13—H13C109.5O12—Ni1—N297.55 (8)
N2—C14—C12126.0 (2)O3—Ni1—N291.00 (7)
N2—C14—H14117.0N1—Ni1—N2164.91 (8)
C12—C14—H14117.0O12—Ni1—O4169.89 (7)
N2—C15—C18107.7 (2)O3—Ni1—O485.67 (7)
N2—C15—C17116.6 (2)N1—Ni1—O478.33 (7)
C18—C15—C17107.0 (2)N2—Ni1—O492.12 (8)
N2—C15—C16106.0 (2)O12—Ni1—O1091.98 (7)
C18—C15—C16109.2 (2)O3—Ni1—O10168.87 (7)
C17—C15—C16110.1 (2)N1—Ni1—O1090.69 (7)
O10—C16—C15109.1 (2)N2—Ni1—O1078.01 (7)
O10—C16—H16A109.9O4—Ni1—O1092.89 (7)
C15—C16—H16A109.9C18—O1—H1109.5
O10—C16—H16B109.9C17—O2—H2A109.5
C15—C16—H16B109.9C7—O3—Ni1122.09 (15)
H16A—C16—H16B108.3C22—O4—Ni1112.16 (13)
O2—C17—C15110.7 (2)C22—O4—H4AA110 (3)
O2—C17—H17A109.5Ni1—O4—H4AA115 (3)
C15—C17—H17A109.5C23—O5—H5109.5
O2—C17—H17B109.5C24—O6—H6109.5
C15—C17—H17B109.5H2AA—O7—H2BB115 (3)
H17A—C17—H17B108.1H1AA—O8—H1BB114 (3)
O1—C18—C15110.7 (2)C8—O9—C13118.7 (3)
O1—C18—H18A109.5C16—O10—Ni1110.53 (14)
C15—C18—H18A109.5C16—O10—H10A109 (3)
O1—C18—H18B109.5Ni1—O10—H10A118 (3)
C15—C18—H18B109.5C5—O11—C19117.5 (2)
H18A—C18—H18B108.1C6—O12—Ni1123.07 (16)
O11—C19—H19A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.670 (3)179
O2—H2A···O11ii0.821.912.666 (3)152
O2—H2A···O12ii0.822.373.010 (3)135
O5—H5···O6iii0.821.872.691 (3)174
O6—H6···O3iv0.821.892.671 (2)159
O10—H10A···O5iv0.82 (3)1.93 (3)2.751 (3)175 (5)
O8—H1AA···O7i0.82 (2)1.97 (1)2.775 (4)166 (4)
O4—H4AA···O8v0.82 (3)1.88 (4)2.686 (3)170 (4)
O8—H1BB···O2vi0.82 (3)2.16 (3)2.962 (3)167 (4)
O7—H2BB···O9ii0.82 (2)2.06 (1)2.862 (4)168 (4)
O7—H2AA···O10.81 (3)1.84 (3)2.641 (3)169 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y1/2, z+3/2; (v) x, y1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H16NO5)2]·2H2O
Mr603.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.0142 (10), 10.9876 (10), 20.324 (2)
β (°) 97.501 (1)
V3)2660.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.44 × 0.29 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.721, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
13321, 4933, 4436
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.00
No. of reflections4933
No. of parameters376
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.670 (3)179.1
O2—H2A···O11ii0.821.912.666 (3)151.8
O2—H2A···O12ii0.822.373.010 (3)135.2
O5—H5···O6iii0.821.872.691 (3)173.7
O6—H6···O3iv0.821.892.671 (2)159.2
O10—H10A···O5iv0.82 (3)1.93 (3)2.751 (3)175 (5)
O8—H1AA···O7i0.82 (2)1.972 (11)2.775 (4)166 (4)
O4—H4AA···O8v0.82 (3)1.88 (4)2.686 (3)170 (4)
O8—H1BB···O2vi0.82 (3)2.16 (3)2.962 (3)167 (4)
O7—H2BB···O9ii0.82 (2)2.055 (10)2.862 (4)168 (4)
O7—H2AA···O10.81 (3)1.84 (3)2.641 (3)169 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y1/2, z+3/2; (v) x, y1, z; (vi) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Science Foundation of Maoming University (grant No. 208033).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKritagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc., 118, 9096–9101.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, Y., Jianmin, L., Min, Z., Wang, Q. & Wu, X. (1998). Chem. Lett., 27, 1051–1052.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds