organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Allyl 4-hy­droxy­phenyl carbonate

aFacultad de Ciencias Químicas, Universidad Autónoma de Puebla, Boulevard 14 Sur, Col. San Manuel, 72570 Puebla, Pue., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 3 April 2009; accepted 11 June 2009; online 17 June 2009)

The title mol­ecule, C10H10O4, is a functionalized carbonate used in the synthetic route to organic glasses. The central CH fragment of the allyl group is disordered over two positions, with occupancies in a 0.758 (10):0.242 (10)ratio. This disorder reflects the torsional flexibility of the oxygen–allyl group, although both disordered parts present the expected anti­clinal conformation, with O—CH2—CH=CH2 torsion angles of −111 (2) and 119.1 (4)°. The crystal structure is based on chains parallel to [010], formed by O⋯H—O hydrogen bonds involving hydroxyl and carbonyl groups as donors and acceptors, respectively. The mol­ecular packing is further stabilized by two weak C—H⋯π contacts from the benzene ring of the asymmetric unit with two benzene rings of neighboring mol­ecules.

Related literature

The crystal structures of two allyl carbonates have been reported to date, see: Michelet et al. (2003[Michelet, V., Adiey, K., Tanier, S., Dujardin, G. & Genêt, J. P. (2003). Eur. J. Org. Chem. pp. 2947-2958.]); Burns & Forsyth (2008[Burns, A. C. & Forsyth, C. J. (2008). Org. Lett. 10, 97-100.]). For the use of allyl ester and allyl carbonate derivatives as precursors for organic glasses, see: Herrera et al. (2003[Herrera, A. M., Bernès, S. & López, D. (2003). Acta Cryst. E59, o1522-o1524.]); Herrera (2006[Herrera, A. M. (2006). PhD Thesis, Universidad Autónoma de Puebla, Mexico.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Monoclinic, P 21

  • a = 5.8148 (7) Å

  • b = 7.5413 (11) Å

  • c = 11.4499 (17) Å

  • β = 93.515 (10)°

  • V = 501.15 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.60 × 0.30 × 0.24 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 2559 measured reflections

  • 1233 independent reflections

  • 1042 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 97 reflections intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.06

  • 1233 reflections

  • 137 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O6i 0.88 1.91 2.762 (2) 160
C10—H10ACgi 0.93 2.90 3.612 (2) 135
C13—H13ACgii 0.93 2.81 3.513 (3) 133
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z]. Cg is the centroid of the benzene ring.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have synthesized some functionalized aromatic allyl ester (Herrera et al., 2003) and allyl carbonate compounds (Herrera, 2006) as intermediates in the preparation of new diallylcarbonate monomers, which are potential precursors of organic glasses. One representative example is the title molecule, which includes phenol and allyl functional groups as substitutents of the carbonate core (Fig. 1).

The allyl group presents a degree of flexibility, resulting in two disordered positions for the methylene group, C21 and C22, with site occupation factors 0.758 (10) and 0.242 (10), respectively (Fig. 1, inset). Regardless of the position for the CH2 fragment, O—allyl chain displays the expected anticlinal conformation, characterized by torsion angles O—CH2—CHCH2 of -111 (2)° and 119.1 (4)°. A similar disorder was previously observed for a closely related phenol allylic derivative, allyl-4-hydroxybenzoate (Herrera et al., 2003). To date, only two acyclic allyl carbonate systems have been X ray characterized, both with non disordered allyl groups. The anticlinal conformation has been stabilized in the first molecule, with O—allyl torsion angle of -131.4° (Michelet et al., 2003), while in the most recent report, a synperiplanar O—allyl group is observed, the torsion angle being 9.7° (Burns & Forsyth, 2008). This very limited set of structurally characterized allyl carbonate derivatives does not allow to determine the factors influencing the stable conformation for these molecules in the solid state. In contrast, a number of allyl ester derivatives have been X-ray characterized, with conformations restricted to two attractors (Herrera et al., 2003).

The crystal structure of the title compound is based on chains running along [010], formed through O···H—O bonds, where carbonyl functionalities act as acceptor and hydroxyl functionalities as donor groups. Moreover, two aryl C—H groups of the benzene ring of the asymmetric unit form stabilizing C—H···π contacts with the centroids of two symmetry-related benzene rings (Fig. 2).

Related literature top

Two allyl carbonate have been X-ray characterized to date, see: Michelet et al. (2003); Burns & Forsyth (2008). For the use of allyl ester and allyl carbonate derivatives as precursors for organic glasses, see: Herrera et al. (2003); Herrera (2006). Cg is the

centroid of the benzene ring.

Experimental top

Allyl 4-hydroxyphenyl-carbonate was synthesized by reacting hydroquinone and allylchloroformate in the presence of NaOH at 273 K for 2 h., affording a white powder (Yield: 43%). After recrystallization from a mixture of methylene chloride and hexane (7:3), colourless crystals were obtained. Anal. calcd for C10H10O4: C 61.85, H 5.19; found: C 61.85, H 5.25.

Refinement top

Allylic CH group was found to be disordered over two sites, C21 and C22, and occupancies were refined with the sum constrained to unity. In order to get a sensible geometry for the minor part, bond length C3—C22 was restrained to 1.480 (15)Å. C-bonded H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93Å (aromatic and allylic H atoms) or 0.97Å (methylene CH2). Hydroxyl H atom H14 was found in a difference map and refined as riding to O14, with the O—H bond length fixed to the found value, 0.883Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier atom) for C-bonded H atoms and Uiso(H) = 1.5Ueq(O14) for H14. Measured Friedel pairs were merged in the final refinement.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 30% probability level. C22 (minor part of the disorder) has been omitted for clarity. The inset shows the complete structure. Colour code: green for C21-disordered part; purple for the C22-disordered part.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound, including hydrogen bonds depicted with blue dashed lines, and C—H···π contacts from the asymmetric unit, represented as red dashed lines. Colour code for symmetry-related molecules: blue -x, -1/2+y, -z; green -x, 1/2+y, -z; red 1-x, 1/2+y, -z; gold x, 1+y, z.
Allyl 4-hydroxyphenyl carbonate top
Crystal data top
C10H10O4F(000) = 204
Mr = 194.18Dx = 1.287 Mg m3
Monoclinic, P21Melting point: 337 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.8148 (7) ÅCell parameters from 52 reflections
b = 7.5413 (11) Åθ = 4.7–13.6°
c = 11.4499 (17) ŵ = 0.10 mm1
β = 93.515 (10)°T = 298 K
V = 501.15 (12) Å3Prism, colorless
Z = 20.60 × 0.30 × 0.24 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.2°
Graphite monochromatorh = 75
2θ/ω scansk = 91
2559 measured reflectionsl = 1414
1233 independent reflections3 standard reflections every 97 reflections
1042 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.0247P]
where P = (Fo2 + 2Fc2)/3
1233 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.10 e Å3
2 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C10H10O4V = 501.15 (12) Å3
Mr = 194.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8148 (7) ŵ = 0.10 mm1
b = 7.5413 (11) ÅT = 298 K
c = 11.4499 (17) Å0.60 × 0.30 × 0.24 mm
β = 93.515 (10)°
Data collection top
Bruker P4
diffractometer
Rint = 0.025
2559 measured reflections3 standard reflections every 97 reflections
1233 independent reflections intensity decay: 0.5%
1042 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.10 e Å3
1233 reflectionsΔρmin = 0.17 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9530 (6)0.3863 (7)0.5802 (3)0.1057 (12)
H1A0.97810.48770.53650.127*0.758 (10)
H1B1.05790.35410.64110.127*0.758 (10)
H1C0.93650.31870.64710.127*0.242 (10)
H1D1.08560.45340.57290.127*0.242 (10)
C210.7760 (6)0.2923 (6)0.5569 (3)0.0724 (13)0.758 (10)
H21A0.75630.19190.60240.087*0.758 (10)
C220.825 (3)0.388 (3)0.4931 (14)0.136 (9)0.242 (10)
H22A0.89320.43950.43020.163*0.242 (10)
C30.5976 (6)0.3307 (5)0.4622 (3)0.0887 (9)
H3A0.44840.34530.49450.106*0.758 (10)
H3B0.63500.43910.42190.106*0.758 (10)
H3C0.50690.42630.42620.106*0.242 (10)
H3D0.52410.29530.53240.106*0.242 (10)
O40.5923 (3)0.1818 (3)0.38141 (16)0.0764 (5)
C50.4547 (4)0.2025 (3)0.2869 (2)0.0610 (5)
O60.3334 (3)0.3258 (3)0.26428 (16)0.0802 (6)
O70.4800 (3)0.0608 (2)0.21897 (15)0.0736 (5)
C80.3616 (4)0.0614 (3)0.10692 (18)0.0563 (5)
C90.1521 (4)0.0236 (3)0.0904 (2)0.0613 (6)
H9A0.08170.07180.15390.074*
C100.0481 (3)0.0368 (3)0.01992 (19)0.0569 (5)
H10A0.09350.09340.03150.068*
C110.1552 (4)0.0349 (3)0.11458 (18)0.0554 (5)
C120.3637 (4)0.1230 (4)0.0966 (2)0.0628 (6)
H12A0.43410.17340.15940.075*
C130.4666 (4)0.1355 (3)0.0157 (2)0.0625 (6)
H13A0.60660.19420.02860.075*
O140.0629 (3)0.0249 (3)0.22658 (14)0.0836 (6)
H140.04180.05980.23440.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.098 (2)0.127 (3)0.090 (2)0.013 (2)0.0110 (17)0.020 (2)
C210.083 (2)0.079 (3)0.0532 (18)0.0054 (19)0.0087 (14)0.0045 (17)
C220.23 (2)0.108 (13)0.073 (9)0.074 (15)0.022 (11)0.019 (9)
C30.0970 (19)0.0839 (19)0.0817 (16)0.0192 (17)0.0228 (14)0.0244 (16)
O40.0857 (11)0.0696 (11)0.0698 (9)0.0154 (9)0.0273 (8)0.0095 (9)
C50.0606 (11)0.0567 (12)0.0640 (12)0.0060 (10)0.0101 (9)0.0000 (10)
O60.0825 (11)0.0763 (12)0.0789 (11)0.0279 (10)0.0197 (9)0.0097 (10)
O70.0836 (10)0.0574 (9)0.0752 (10)0.0154 (9)0.0315 (8)0.0076 (8)
C80.0580 (11)0.0486 (11)0.0606 (11)0.0064 (10)0.0114 (9)0.0040 (10)
C90.0622 (12)0.0593 (13)0.0620 (12)0.0034 (10)0.0017 (10)0.0043 (10)
C100.0471 (10)0.0536 (12)0.0692 (13)0.0050 (9)0.0031 (9)0.0011 (10)
C110.0582 (10)0.0476 (11)0.0591 (10)0.0055 (10)0.0061 (9)0.0034 (10)
C120.0619 (12)0.0590 (13)0.0678 (13)0.0138 (11)0.0067 (10)0.0041 (11)
C130.0500 (11)0.0548 (12)0.0813 (14)0.0100 (10)0.0071 (10)0.0116 (11)
O140.0940 (12)0.0949 (15)0.0596 (9)0.0340 (12)0.0141 (8)0.0015 (10)
Geometric parameters (Å, º) top
C1—C221.208 (16)C5—O61.186 (3)
C1—C211.265 (5)C5—O71.335 (3)
C1—H1A0.9300O7—C81.418 (2)
C1—H1B0.9300C8—C131.362 (4)
C1—H1C0.9300C8—C91.379 (3)
C1—H1D0.9300C9—C101.371 (3)
C21—C31.482 (4)C9—H9A0.9300
C21—H21A0.9300C10—C111.392 (3)
C22—C31.414 (13)C10—H10A0.9300
C22—H22A0.9300C11—O141.362 (2)
C3—O41.454 (4)C11—C121.387 (3)
C3—H3A0.9700C12—C131.388 (3)
C3—H3B0.9700C12—H12A0.9300
C3—H3C0.9700C13—H13A0.9300
C3—H3D0.9700O14—H140.8830
O4—C51.315 (3)
H1A—C1—H1B120.0C5—O4—C3114.8 (2)
H1C—C1—H1D120.0O6—C5—O4126.6 (2)
C21—C1—H1A120.0O6—C5—O7125.9 (2)
C21—C1—H1B120.0O4—C5—O7107.52 (19)
C22—C1—H1C126.5C5—O7—C8117.36 (17)
C22—C1—H1D113.2C13—C8—C9121.3 (2)
C1—C21—C3124.7 (4)C13—C8—O7118.65 (19)
C1—C22—C3136.4 (14)C9—C8—O7119.9 (2)
C1—C21—H21A117.7C10—C9—C8119.7 (2)
C1—C22—H22A111.8C10—C9—H9A120.1
C3—C21—H21A117.7C8—C9—H9A120.1
C3—C22—H22A111.8C9—C10—C11119.77 (19)
C22—C3—O4112.2 (8)C9—C10—H10A120.1
O4—C3—C21107.5 (3)C11—C10—H10A120.1
O4—C3—H3A110.2O14—C11—C12117.2 (2)
O4—C3—H3B110.2O14—C11—C10122.85 (18)
C21—C3—H3A110.2C12—C11—C10119.95 (19)
C21—C3—H3B110.2C11—C12—C13119.6 (2)
H3A—C3—H3B108.5C11—C12—H12A120.2
C22—C3—H3C110.8C13—C12—H12A120.2
C22—C3—H3D109.2C8—C13—C12119.64 (19)
O4—C3—H3C108.3C8—C13—H13A120.2
O4—C3—H3D108.8C12—C13—H13A120.2
C21—C3—H3C142.5C11—O14—H14111.4
H3C—C3—H3D107.5
C22—C1—C21—C315.6 (12)C5—O7—C8—C1387.7 (3)
C21—C1—C22—C319.6 (16)C5—O7—C8—C997.1 (3)
C1—C22—C3—O4111 (2)C13—C8—C9—C101.0 (4)
C1—C22—C3—C2119.0 (16)O7—C8—C9—C10174.1 (2)
C1—C21—C3—C2215.1 (11)C8—C9—C10—C110.3 (3)
C1—C21—C3—O4119.1 (4)C9—C10—C11—O14179.3 (2)
C22—C3—O4—C5128.5 (9)C9—C10—C11—C121.6 (3)
C21—C3—O4—C5174.7 (3)O14—C11—C12—C13179.3 (2)
C3—O4—C5—O62.4 (4)C10—C11—C12—C131.5 (4)
C3—O4—C5—O7176.2 (3)C9—C8—C13—C121.1 (4)
O6—C5—O7—C83.8 (4)O7—C8—C13—C12174.0 (2)
O4—C5—O7—C8174.8 (2)C11—C12—C13—C80.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O6i0.881.912.762 (2)160
C10—H10A···Cgi0.932.903.612 (2)135
C13—H13A···Cgii0.932.813.513 (3)133
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.8148 (7), 7.5413 (11), 11.4499 (17)
β (°) 93.515 (10)
V3)501.15 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.30 × 0.24
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2559, 1233, 1042
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.06
No. of reflections1233
No. of parameters137
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.17

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O6i0.881.912.762 (2)160.3
C10—H10A···Cgi0.932.903.612 (2)135
C13—H13A···Cgii0.932.813.513 (3)133
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y+1/2, z.
 

Acknowledgements

Financial support from VIEP-BUAP (grant 7-/I/NAT/05–06) is acknowledged. VHFA also express his sincere thanks to VIEP for a partial scholarship.

References

First citationBurns, A. C. & Forsyth, C. J. (2008). Org. Lett. 10, 97–100.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHerrera, A. M. (2006). PhD Thesis, Universidad Autónoma de Puebla, Mexico.  Google Scholar
First citationHerrera, A. M., Bernès, S. & López, D. (2003). Acta Cryst. E59, o1522–o1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMichelet, V., Adiey, K., Tanier, S., Dujardin, G. & Genêt, J. P. (2003). Eur. J. Org. Chem. pp. 2947–2958.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds