organic compounds
(E)-3-(2,6-Dichlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one
aDépartement de Chimie et de Chimie Pharmaceutique, Université de Msila, 28000 Algeria, bFaculté de Chimie, USTHB, BP32, El-Alia, Bab-Ezzouar, Alger, Algeria, cLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and dLaboratoire de Chimie des Matériaux, Université de Mentouri, 25000 Constantine, Algeria
*Correspondence e-mail: belhouas.ratiba@yahoo.fr
In the title compound, C16H12Cl2O2, the dichlorophenyl and methoxyphenyl groups are linked by a prop-2-en-1-one group. The C=C double bond is trans configured. The molecule is not planar, as can be seen from the dihedral angle of 6.21 (7)° between the planes of the two rings. The can be described by two types of crossed layers which are parallel to (110) and (10).
Related literature
For background to the applications of et al. (2003); Li et al. (1995); Hsieh et al. (1998); Barford et al. (2002); Rojas et al. (2002); Nerya et al. (2006); Yang et al. (2000); Ducki et al. (1998); Goto et al. (1991); Indira et al. (2002); Lawrence et al. (2001); Nielsen et al. (2005); Sarker & Nahar (2004); Sarojini et al. (2006). For related structures, see: Yathirajan et al. (2007); Butcher et al. (2007); Fischer et al. (2007).
see: LiuExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and DIAMOND (Brandenburg & Berndt, 2001).
Supporting information
10.1107/S1600536809020145/bq2141sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809020145/bq2141Isup2.hkl
To a mixture of 2,6 dichlorobenzaldehyde (1.75 g, 0.01 mol) and 4-methoxyacetophenone (1.50 g, 0.01 mol) in ethanol 20 ml in the presence of a catalytic amount of sodium hydroxide solution (5 ml) was added slowly with stirring (6 h), the contents of the flask were poured into ice cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and purified by recrystallization in ethanol. Crystal suitable for x-ray analysis was grown by slow evaporation of an acetone solution at room temperature.
All H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.95–0.98Å and Uiso(H) =1.2–1.5(carrier atom).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and DIAMOND (Brandenburg & Berndt, 2001).C16H12Cl2O2 | F(000) = 632 |
Mr = 307.16 | Dx = 1.445 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3041 reflections |
a = 6.4793 (2) Å | θ = 2.4–27.4° |
b = 12.9807 (5) Å | µ = 0.46 mm−1 |
c = 16.7819 (8) Å | T = 100 K |
V = 1411.46 (10) Å3 | Prism, colourless |
Z = 4 | 0.37 × 0.28 × 0.2 mm |
Bruker APEXII diffractometer | 2964 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
CCD rotation images, thin slices scans | θmax = 27.4°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS, Bruker, 1998) | h = −6→8 |
Tmin = 0.824, Tmax = 0.913 | k = −15→16 |
6643 measured reflections | l = −20→21 |
3211 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.5074P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
3211 reflections | Δρmax = 0.51 e Å−3 |
182 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1331 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (6) |
C16H12Cl2O2 | V = 1411.46 (10) Å3 |
Mr = 307.16 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.4793 (2) Å | µ = 0.46 mm−1 |
b = 12.9807 (5) Å | T = 100 K |
c = 16.7819 (8) Å | 0.37 × 0.28 × 0.2 mm |
Bruker APEXII diffractometer | 3211 independent reflections |
Absorption correction: multi-scan (SADABS, Bruker, 1998) | 2964 reflections with I > 2σ(I) |
Tmin = 0.824, Tmax = 0.913 | Rint = 0.029 |
6643 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.51 e Å−3 |
S = 1.05 | Δρmin = −0.20 e Å−3 |
3211 reflections | Absolute structure: Flack (1983), 1331 Friedel pairs |
182 parameters | Absolute structure parameter: 0.01 (6) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.49869 (7) | 1.03293 (4) | 0.58897 (3) | 0.02481 (12) | |
Cl5 | 0.06450 (7) | 0.84015 (4) | 0.35072 (3) | 0.02267 (12) | |
C1 | 0.2990 (3) | 0.95544 (14) | 0.55269 (13) | 0.0174 (4) | |
C2 | 0.1599 (3) | 0.91924 (15) | 0.60937 (13) | 0.0211 (4) | |
H2 | 0.1779 | 0.9363 | 0.664 | 0.025* | |
C3 | −0.0051 (3) | 0.85821 (14) | 0.58604 (13) | 0.0226 (4) | |
H3 | −0.1001 | 0.8333 | 0.6246 | 0.027* | |
C4 | −0.0312 (3) | 0.83360 (14) | 0.50613 (12) | 0.0206 (4) | |
H4 | −0.1422 | 0.7907 | 0.4898 | 0.025* | |
C5 | 0.1068 (3) | 0.87235 (14) | 0.45044 (12) | 0.0167 (4) | |
C6 | 0.2774 (3) | 0.93459 (13) | 0.47063 (13) | 0.0149 (4) | |
C7 | 0.4050 (3) | 0.97926 (13) | 0.40676 (12) | 0.0150 (4) | |
H7 | 0.3354 | 0.9928 | 0.358 | 0.018* | |
C8 | 0.6062 (3) | 1.00344 (13) | 0.40815 (13) | 0.0169 (4) | |
H8 | 0.6877 | 0.9871 | 0.4535 | 0.02* | |
C9 | 0.7012 (3) | 1.05587 (14) | 0.33855 (12) | 0.0172 (4) | |
O10 | 0.61836 (19) | 1.05435 (10) | 0.27255 (9) | 0.0215 (3) | |
C11 | 0.8991 (3) | 1.11288 (13) | 0.35089 (12) | 0.0154 (4) | |
C12 | 0.9741 (3) | 1.13891 (13) | 0.42704 (11) | 0.0164 (4) | |
H12 | 0.9017 | 1.1168 | 0.4732 | 0.02* | |
C13 | 1.1527 (3) | 1.19652 (14) | 0.43510 (12) | 0.0172 (4) | |
H13 | 1.2022 | 1.2139 | 0.4867 | 0.021* | |
C14 | 1.0073 (3) | 1.14718 (13) | 0.28402 (11) | 0.0170 (4) | |
H14 | 0.9569 | 1.131 | 0.2324 | 0.02* | |
C15 | 1.1874 (3) | 1.20463 (14) | 0.29156 (12) | 0.0173 (4) | |
H15 | 1.26 | 1.227 | 0.2455 | 0.021* | |
C16 | 1.2603 (3) | 1.22906 (14) | 0.36746 (12) | 0.0172 (4) | |
O17 | 1.4376 (2) | 1.28344 (10) | 0.38116 (8) | 0.0224 (3) | |
C18 | 1.5488 (3) | 1.32052 (14) | 0.31247 (13) | 0.0225 (4) | |
H18A | 1.5785 | 1.2628 | 0.2766 | 0.034* | |
H18B | 1.6786 | 1.3522 | 0.3297 | 0.034* | |
H18C | 1.4648 | 1.3718 | 0.2844 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0219 (2) | 0.0314 (2) | 0.0211 (3) | −0.0074 (2) | −0.0005 (2) | −0.0049 (2) |
Cl5 | 0.0219 (2) | 0.0227 (2) | 0.0234 (3) | −0.0029 (2) | −0.0021 (2) | −0.0059 (2) |
C1 | 0.0151 (8) | 0.0157 (9) | 0.0215 (11) | 0.0023 (8) | −0.0002 (8) | 0.0001 (8) |
C2 | 0.0214 (10) | 0.0226 (10) | 0.0193 (11) | 0.0027 (9) | 0.0009 (8) | 0.0047 (8) |
C3 | 0.0193 (9) | 0.0232 (9) | 0.0255 (11) | −0.0005 (9) | 0.0070 (9) | 0.0083 (8) |
C4 | 0.0156 (9) | 0.0156 (8) | 0.0305 (12) | −0.0028 (8) | 0.0000 (8) | 0.0023 (8) |
C5 | 0.0157 (9) | 0.0123 (8) | 0.0221 (11) | 0.0024 (8) | −0.0027 (8) | 0.0005 (7) |
C6 | 0.0129 (8) | 0.0116 (8) | 0.0203 (10) | 0.0030 (7) | 0.0014 (7) | 0.0009 (7) |
C7 | 0.0188 (9) | 0.0112 (8) | 0.0150 (10) | 0.0024 (7) | −0.0008 (8) | 0.0005 (8) |
C8 | 0.0163 (9) | 0.0161 (9) | 0.0182 (11) | 0.0025 (7) | −0.0013 (8) | 0.0034 (8) |
C9 | 0.0160 (8) | 0.0161 (9) | 0.0195 (11) | 0.0034 (7) | 0.0020 (8) | −0.0002 (8) |
O10 | 0.0188 (6) | 0.0280 (7) | 0.0176 (8) | −0.0035 (6) | −0.0014 (6) | 0.0022 (6) |
C11 | 0.0140 (8) | 0.0150 (8) | 0.0172 (10) | 0.0021 (7) | 0.0000 (8) | 0.0005 (8) |
C12 | 0.0180 (9) | 0.0168 (9) | 0.0146 (10) | 0.0039 (8) | 0.0026 (7) | 0.0019 (7) |
C13 | 0.0212 (9) | 0.0170 (9) | 0.0135 (10) | 0.0022 (8) | −0.0034 (8) | −0.0031 (7) |
C14 | 0.0169 (8) | 0.0193 (9) | 0.0149 (9) | 0.0017 (9) | −0.0016 (8) | 0.0009 (7) |
C15 | 0.0170 (9) | 0.0185 (9) | 0.0163 (10) | 0.0003 (8) | 0.0022 (8) | 0.0040 (8) |
C16 | 0.0166 (9) | 0.0121 (8) | 0.0228 (12) | 0.0005 (8) | −0.0013 (7) | 0.0013 (8) |
O17 | 0.0214 (7) | 0.0264 (7) | 0.0195 (8) | −0.0088 (6) | −0.0016 (6) | 0.0005 (6) |
C18 | 0.0202 (10) | 0.0218 (9) | 0.0256 (11) | −0.0072 (8) | 0.0001 (8) | 0.0037 (8) |
Cl1—C1 | 1.7484 (19) | C9—C11 | 1.494 (3) |
Cl5—C5 | 1.747 (2) | C11—C14 | 1.396 (3) |
C1—C2 | 1.392 (3) | C11—C12 | 1.409 (3) |
C1—C6 | 1.410 (3) | C12—C13 | 1.384 (3) |
C2—C3 | 1.387 (3) | C12—H12 | 0.95 |
C2—H2 | 0.95 | C13—C16 | 1.397 (3) |
C3—C4 | 1.389 (3) | C13—H13 | 0.95 |
C3—H3 | 0.95 | C14—C15 | 1.391 (3) |
C4—C5 | 1.388 (3) | C14—H14 | 0.95 |
C4—H4 | 0.95 | C15—C16 | 1.395 (3) |
C5—C6 | 1.410 (3) | C15—H15 | 0.95 |
C6—C7 | 1.473 (3) | C16—O17 | 1.368 (2) |
C7—C8 | 1.342 (2) | O17—C18 | 1.442 (2) |
C7—H7 | 0.95 | C18—H18A | 0.98 |
C8—C9 | 1.485 (3) | C18—H18B | 0.98 |
C8—H8 | 0.95 | C18—H18C | 0.98 |
C9—O10 | 1.231 (2) | ||
C2—C1—C6 | 122.56 (18) | C8—C9—C11 | 118.26 (17) |
C2—C1—Cl1 | 115.81 (16) | C14—C11—C12 | 118.64 (16) |
C6—C1—Cl1 | 121.59 (15) | C14—C11—C9 | 118.51 (18) |
C3—C2—C1 | 119.9 (2) | C12—C11—C9 | 122.73 (17) |
C3—C2—H2 | 120 | C13—C12—C11 | 120.46 (17) |
C1—C2—H2 | 120 | C13—C12—H12 | 119.8 |
C2—C3—C4 | 119.84 (18) | C11—C12—H12 | 119.8 |
C2—C3—H3 | 120.1 | C12—C13—C16 | 120.05 (18) |
C4—C3—H3 | 120.1 | C12—C13—H13 | 120 |
C5—C4—C3 | 119.26 (17) | C16—C13—H13 | 120 |
C5—C4—H4 | 120.4 | C15—C14—C11 | 121.28 (18) |
C3—C4—H4 | 120.4 | C15—C14—H14 | 119.4 |
C4—C5—C6 | 123.41 (19) | C11—C14—H14 | 119.4 |
C4—C5—Cl5 | 117.23 (14) | C14—C15—C16 | 119.28 (18) |
C6—C5—Cl5 | 119.36 (15) | C14—C15—H15 | 120.4 |
C1—C6—C5 | 114.98 (18) | C16—C15—H15 | 120.4 |
C1—C6—C7 | 125.42 (17) | O17—C16—C15 | 123.72 (18) |
C5—C6—C7 | 119.37 (18) | O17—C16—C13 | 116.00 (18) |
C8—C7—C6 | 128.68 (19) | C15—C16—C13 | 120.27 (17) |
C8—C7—H7 | 115.7 | C16—O17—C18 | 117.23 (15) |
C6—C7—H7 | 115.7 | O17—C18—H18A | 109.5 |
C7—C8—C9 | 119.76 (19) | O17—C18—H18B | 109.5 |
C7—C8—H8 | 120.1 | H18A—C18—H18B | 109.5 |
C9—C8—H8 | 120.1 | O17—C18—H18C | 109.5 |
O10—C9—C8 | 121.29 (17) | H18A—C18—H18C | 109.5 |
O10—C9—C11 | 120.44 (17) | H18B—C18—H18C | 109.5 |
C6—C1—C2—C3 | 1.5 (3) | C7—C8—C9—C11 | 159.67 (16) |
Cl1—C1—C2—C3 | 179.21 (14) | O10—C9—C11—C14 | −12.1 (3) |
C1—C2—C3—C4 | −0.1 (3) | C8—C9—C11—C14 | 169.21 (16) |
C2—C3—C4—C5 | −1.3 (3) | O10—C9—C11—C12 | 163.91 (17) |
C3—C4—C5—C6 | 1.4 (3) | C8—C9—C11—C12 | −14.8 (2) |
C3—C4—C5—Cl5 | −179.22 (14) | C14—C11—C12—C13 | −0.6 (2) |
C2—C1—C6—C5 | −1.4 (3) | C9—C11—C12—C13 | −176.57 (16) |
Cl1—C1—C6—C5 | −178.94 (13) | C11—C12—C13—C16 | −0.2 (3) |
C2—C1—C6—C7 | 173.05 (17) | C12—C11—C14—C15 | 1.0 (2) |
Cl1—C1—C6—C7 | −4.5 (3) | C9—C11—C14—C15 | 177.10 (16) |
C4—C5—C6—C1 | −0.1 (2) | C11—C14—C15—C16 | −0.5 (3) |
Cl5—C5—C6—C1 | −179.47 (13) | C14—C15—C16—O17 | 178.75 (16) |
C4—C5—C6—C7 | −174.87 (16) | C14—C15—C16—C13 | −0.3 (3) |
Cl5—C5—C6—C7 | 5.8 (2) | C12—C13—C16—O17 | −178.48 (15) |
C1—C6—C7—C8 | 35.1 (3) | C12—C13—C16—C15 | 0.6 (3) |
C5—C6—C7—C8 | −150.75 (19) | C15—C16—O17—C18 | 2.6 (2) |
C6—C7—C8—C9 | −175.13 (17) | C13—C16—O17—C18 | −178.31 (16) |
C7—C8—C9—O10 | −19.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···Cg1i | 0.95 | 2.84 | 3.727 | 157 |
C7—H7···Cg2i | 0.95 | 2.85 | 3.360 | 115 |
Symmetry code: (i) x+1/2, −y−1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H12Cl2O2 |
Mr | 307.16 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 6.4793 (2), 12.9807 (5), 16.7819 (8) |
V (Å3) | 1411.46 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.37 × 0.28 × 0.2 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS, Bruker, 1998) |
Tmin, Tmax | 0.824, 0.913 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6643, 3211, 2964 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.090, 1.05 |
No. of reflections | 3211 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.20 |
Absolute structure | Flack (1983), 1331 Friedel pairs |
Absolute structure parameter | 0.01 (6) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and DIAMOND (Brandenburg & Berndt, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···Cg1i | 0.95 | 2.836 | 3.727 | 157 |
C7—H7···Cg2i | 0.95 | 2.849 | 3.360 | 115 |
Symmetry code: (i) x+1/2, −y−1/2, −z. |
Acknowledgements
The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data-collection facilities.
References
Barford, L., Kemp, K., Hansen, M. & Kharazmi, A. (2002). Int. Immunopharm. 2, 545–550. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. & Rennison, D. (1998). Bioorg. Med. Chem. Lett. 8, 1051–1055. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1349–o1350. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698. CrossRef CAS Web of Science Google Scholar
Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46. Web of Science CrossRef CAS PubMed Google Scholar
Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214. Web of Science CrossRef CAS Google Scholar
Lawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421–426. Web of Science CrossRef PubMed CAS Google Scholar
Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. J. (1995). Med. Chem. 38, 5031–5033. CrossRef CAS Web of Science Google Scholar
Liu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. L. (2003). Bioorg. Med. Chem. 11, 2729–2733. Web of Science CrossRef PubMed CAS Google Scholar
Nerya, O., Musa, R., Khatib, S., Tamir, S. & Jacob, O. (2006). Phytochemistry, 65, 1389–1393. Web of Science CrossRef Google Scholar
Nielsen, S. F., Larsen, M., Boesen, T., Schοnning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677. Web of Science CrossRef PubMed CAS Google Scholar
Rojas, J., Paya, M., Dominguez, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1953. Web of Science CrossRef PubMed CAS Google Scholar
Sarker, S. D. & Nahar, L. (2004). Curr. Med. Chem. 11, 1479–1500. Web of Science CrossRef PubMed CAS Google Scholar
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701. Web of Science PubMed Google Scholar
Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini & Bolte, M. (2007). Acta Cryst. E63, o428–o429. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For a structurally simple group of compounds, chalcones have displayed an impressive array for biological activities, among which anti-malarial (Liu et al., 2003), anti protozoal (Li et al., 1995), anti-inflammatory (Hsieh et al., 1998), immunomodulatory (Barford et al., 2002), nitric oxid inhibition (Rojas et al., 2002), tyronase inhibition (Nerya et al., 2006), cytotoxic (Yang et al., 2000) and anticancer (Ducki et al., 1998) activities have been cited in literature.
Chalcone may be useful for the chemotherapy of leishmanisis among others (Lawrence et al., 2001), they are also used as antibiotics (Nielsen et al., 2005). They were synthesized by a base catalyzed Claisen-Schmidt condensation of aromatic aldehydes and ketones. A natural medicine genus Angelica is known to contain large number of naturally occurring chalcones (Sarker et al., 2004). Chalcone derivatives are recognized for NLO properties and have good crystallization ability (Goto et al., 1991; Indira et al., 2002; Sarojini et al., 2006).
Structure of few related chalcones viz., (2E) -1- (2,4-dichlorophenyl) -3-(2-hydrox-3-metoxyphenyl)prop -2-en-1-one (Yathirajan et al., 2007), (2E) -1- (3-hydroxyphenyl) -3-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007), (2E)-3-(biphenyl-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (Fischer et al., 2007).
The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. A diagram of the layered crystal packing in the unit cell of (I) is shown in Fig. 2. A substituted chalcone adopts an E configuration with respect to the C=C bond of the enone unit. The molecule is not planar, as can be seen from the dihedral angle of 6.21 (7)° between the two rings. The crystal structure can be described by two types of crossed layers, parallel to (110) and (1–10) respectively (Fig. 2).
The packing is stabilized by Van der Walls interactions and by C—H···π interactions resulting in the formation of three dimensional network (Table 1.).