metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m836-m837

Chloridobis(ethyl­enedi­amine-κ2N,N′)(n-pentyl­amine-κN)cobalt(III) dichloride monhydrate

aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, bDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600089, India.
*Correspondence e-mail: kanuniv@gmail.com

(Received 6 May 2009; accepted 13 June 2009; online 27 June 2009)

The title complex, [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O, comprises one chloridobis(ethyl­enediamine)(n-pentyl­amine)cobalt(III) cation, two chloride counter-anions and a water mol­ecule. The CoIII atom of the complex is hexa­coordinated by five N and one Cl atoms. The five N atoms are from two chelating ethyl­enediamine and one n-pentyl­amine ligands. Neighbouring cations and anions are connected by N—H⋯Cl and N—H⋯O hydrogen bonds to each other and also to the water mol­ecule.

Related literature

For the potential applications of metal–chelate complexes, see: Tweedy (1964[Tweedy, B. G. (1964). Phytopathology, 55, 910-914.]); Kralova et al. (2004[Kralova, K., Kissova, K., Svajlenova, O. & Vanco, J. (2004). Chem. Pap. 58, 357-361.]); Parekh et al. (2005[Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155-1161.]); Rajevel et al. (2008[Rajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Eur. J. Chem. 5, 620.]). For cobalt(III) complexes, see: Bailer & Clapp (1945[Bailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171-175.]); Bailer & Rollinson (1946[Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222-223.]). For a related structure, see: Ou et al. (2007[Ou, G.-C., Chen, H.-Y., Zhang, M. & Yuan, X.-Y. (2007). Acta Cryst. E63, m36-m38.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O

  • Mr = 390.67

  • Monoclinic, P 21 /n

  • a = 10.5214 (3) Å

  • b = 7.2294 (2) Å

  • c = 23.6225 (6) Å

  • β = 96.117 (2)°

  • V = 1786.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa-APEX2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.719, Tmax = 0.816

  • 23262 measured reflections

  • 5510 independent reflections

  • 4506 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.090

  • S = 1.10

  • 5510 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl3 0.90 2.39 3.2589 (14) 162
N1—H1D⋯O1 0.90 2.12 3.018 (3) 174
N3—H3C⋯Cl3 0.90 2.56 3.3641 (14) 150
N4—H4D⋯Cl3i 0.90 2.36 3.2597 (14) 179
N4—H4C⋯Cl2ii 0.90 2.51 3.3731 (15) 161
N5—H5C⋯Cl3iii 0.90 2.51 3.3605 (15) 158
N5—H5D⋯Cl3i 0.90 2.56 3.3784 (15) 151
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y, -z+2; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2. SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2. SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal-chelate complexes find potential applications in the research fields (Tweedy, 1964; Kralova et al., 2004) of antitumor activity, enzyme catalysis, functioning of micro organisms and in the respiration processes of biological systems (Parekh et al., 2005; Rajevel et al., 2008). Chelating ligand such as ethylenediamine has been widely used to prepare a number of cobalt(III) complexes (Bailer & Clapp, 1945; Bailer & Rollinson, 1946). A structural analogue of the cobalt(III)-alkyl amine complex, such as chloro(n-pentyl amine)bis(ethylenediamine)cobalt(III) chloride, [CoIII(en)2(nPentNH2) Cl]Cl2, is studied. Cobalt(III) complex consisting of n-PentNH2 ligand, is an interesting complex showing some novel reactivity. Hence, single-crystal X-ray study of the above compound has been carried out.

The molecular structure of the title compound is shown in Fig. 1. The title compound, Cis-[CoIII(en)2(nPentNH2)Cl]Cl2.H2O, is a mononuclear cobalt(III) complex. The Co(III) atom is hexa-coordinated by six ligating atoms (five N and one Cl) forming two chelating ethylenediamine ligands, leading to a slightly distorted octahedral configuration. The two chloride ions act as counter-ions. The average Co— N bond length is 1.963 (4) Å and agrees well with related literature (Ou et al., 2007).

The crystal structure is stabilized by intramolecular N—H···O and N—H···Cl interactions. The molecules are linked into three-dimensional framework by N—H···Cl and C—H···Cl intermolecular interactions (Fig. 2, Table 1).

Related literature top

For the potential applications of metal–chelate complexes, see: Tweedy (1964); Kralova et al. (2004); Parekh et al. (2005); Rajevel et al. (2008). For cobalt(III) complexes, see: Bailer & Clapp (1945); Bailer & Rollinson (1946). For a related structure, see: Ou et al. (2007).

Experimental top

A modified method of synthesize of cis-[CoIII(en)2(nPentNH2)Cl]Cl2.H2O was developed by substituting chloride ligand with AnalaR n-pentyl amine in trans-[Co(en)2Cl2]Cl. AnalaR n-pentyl amine (2–3 ml) was added in drops to a paste of 2 g of the trans-dichlorobis(1,2-diamino ethane)cobalt(III) chloride suspended in 1 ml of water. The mixture was ground for an hour until the solid becomes rosy red, and allowed overnight. The complex was recrystallized from acidified water. Single crystal was grown by adding the metal complex in triply distilled water containing few drops of conc. HCl and kept at 0°C for 2–3 weeks.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.97Å and 0.96Å for methylene and methyl H respectively, and N—H = 0.86Å, and with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for all other H atoms. The H atoms of the water molecule were located in a difference Fourier map and their positional parameters refined with Uiso(H) = 1.5Ueq(O), and with the O—H distances restrained to be 0.85 (1)Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted.
Chloridobis(ethylenediamine-κ2N,N')(n- pentylamine-κN)cobalt(III) dichloride monhydrate top
Crystal data top
[CoCl(C5H13N)(C2H8N2)2]Cl2·H2OF(000) = 824
Mr = 390.67Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8809 reflections
a = 10.5214 (3) Åθ = 2.9–30.6°
b = 7.2294 (2) ŵ = 1.41 mm1
c = 23.6225 (6) ÅT = 293 K
β = 96.117 (2)°Prismatic, orange
V = 1786.58 (8) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa-APEX2 CCD
diffractometer
5510 independent reflections
Radiation source: fine-focus sealed tube4506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 30.7°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1515
Tmin = 0.719, Tmax = 0.816k = 810
23262 measured reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.0821P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.006
5510 reflectionsΔρmax = 0.52 e Å3
181 parametersΔρmin = 0.35 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (6)
Crystal data top
[CoCl(C5H13N)(C2H8N2)2]Cl2·H2OV = 1786.58 (8) Å3
Mr = 390.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5214 (3) ŵ = 1.41 mm1
b = 7.2294 (2) ÅT = 293 K
c = 23.6225 (6) Å0.25 × 0.20 × 0.15 mm
β = 96.117 (2)°
Data collection top
Bruker Kappa-APEX2 CCD
diffractometer
5510 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4506 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.816Rint = 0.029
23262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.52 e Å3
5510 reflectionsΔρmin = 0.35 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6942 (2)0.3891 (2)0.95347 (8)0.0391 (4)
H1A0.63170.47500.96570.047*
H1B0.76750.45920.94390.047*
C20.73406 (18)0.2535 (2)1.00007 (8)0.0352 (4)
H2A0.78460.31451.03140.042*
H2B0.65970.19821.01430.042*
C30.95703 (17)0.0374 (3)0.84080 (8)0.0387 (4)
H3A1.04000.09130.83680.046*
H3B0.92090.00740.80380.046*
C40.96996 (17)0.1182 (3)0.88299 (8)0.0364 (4)
H4A1.01070.22370.86700.044*
H4B1.02200.07980.91730.044*
C50.52205 (16)0.0781 (2)0.80180 (8)0.0328 (4)
H5A0.53490.20920.79570.039*
H5B0.46560.06530.83150.039*
C60.45868 (16)0.0068 (3)0.74740 (7)0.0337 (4)
H6A0.44510.13770.75350.040*
H6B0.51520.00530.71770.040*
C70.33189 (17)0.0838 (3)0.72777 (8)0.0384 (4)
H7A0.34530.21550.72340.046*
H7B0.27450.06730.75690.046*
C80.26886 (18)0.0065 (3)0.67194 (8)0.0393 (4)
H8A0.32790.01690.64330.047*
H8B0.25100.12380.67690.047*
C90.1464 (2)0.1043 (4)0.65112 (12)0.0659 (7)
H9A0.11080.05010.61580.099*
H9B0.16360.23290.64530.099*
H9C0.08670.09220.67890.099*
N10.63802 (13)0.28252 (18)0.90348 (6)0.0277 (3)
H1C0.64090.35010.87170.033*
H1D0.55560.25670.90720.033*
N20.81072 (13)0.11089 (18)0.97448 (5)0.0262 (3)
H2C0.81440.00810.99610.031*
H2D0.89100.15250.97310.031*
N30.87124 (13)0.1775 (2)0.86270 (6)0.0304 (3)
H3C0.83780.25010.83390.036*
H3D0.91610.24950.88870.036*
N40.84066 (13)0.16872 (19)0.89632 (6)0.0287 (3)
H4C0.84570.22490.93050.034*
H4D0.80520.24850.87000.034*
N50.64631 (13)0.0082 (2)0.82114 (6)0.0280 (3)
H5C0.70050.02010.79540.034*
H5D0.63500.13160.81970.034*
O10.3655 (2)0.2049 (5)0.92521 (12)0.1255 (12)
Cl10.58524 (4)0.11512 (6)0.935779 (18)0.03265 (10)
Cl21.09085 (4)0.29130 (6)0.96604 (2)0.03712 (11)
Cl30.71601 (4)0.54255 (6)0.799916 (18)0.03417 (10)
Co10.733516 (18)0.05224 (3)0.897435 (8)0.02096 (7)
H1E0.2883 (17)0.237 (6)0.9277 (18)0.17 (2)*
H1F0.394 (3)0.137 (4)0.9526 (11)0.112 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0500 (11)0.0276 (8)0.0377 (10)0.0041 (7)0.0040 (8)0.0063 (7)
C20.0430 (10)0.0363 (9)0.0258 (8)0.0007 (7)0.0007 (7)0.0091 (7)
C30.0290 (8)0.0591 (12)0.0287 (9)0.0046 (8)0.0069 (7)0.0004 (8)
C40.0280 (8)0.0435 (10)0.0368 (10)0.0095 (7)0.0005 (7)0.0062 (8)
C50.0286 (8)0.0373 (9)0.0305 (9)0.0047 (6)0.0068 (6)0.0044 (7)
C60.0306 (8)0.0408 (9)0.0279 (9)0.0023 (7)0.0056 (6)0.0024 (7)
C70.0321 (9)0.0480 (10)0.0328 (10)0.0057 (7)0.0068 (7)0.0062 (8)
C80.0350 (9)0.0469 (10)0.0331 (10)0.0021 (8)0.0097 (7)0.0036 (8)
C90.0468 (13)0.0812 (17)0.0632 (16)0.0152 (12)0.0241 (11)0.0116 (13)
N10.0287 (7)0.0261 (6)0.0278 (7)0.0018 (5)0.0005 (5)0.0014 (5)
N20.0274 (6)0.0286 (6)0.0218 (6)0.0027 (5)0.0017 (5)0.0002 (5)
N30.0264 (6)0.0369 (7)0.0274 (7)0.0017 (5)0.0017 (5)0.0070 (6)
N40.0313 (7)0.0283 (6)0.0250 (7)0.0035 (5)0.0037 (5)0.0030 (5)
N50.0276 (6)0.0345 (7)0.0208 (6)0.0030 (5)0.0032 (5)0.0009 (5)
O10.0775 (15)0.188 (3)0.121 (2)0.0730 (17)0.0573 (15)0.104 (2)
Cl10.0302 (2)0.0344 (2)0.0332 (2)0.00734 (15)0.00280 (15)0.00406 (16)
Cl20.0307 (2)0.0406 (2)0.0387 (2)0.00616 (16)0.00247 (16)0.00198 (18)
Cl30.0438 (2)0.0327 (2)0.0259 (2)0.00019 (16)0.00328 (16)0.00105 (15)
Co10.02095 (11)0.02308 (11)0.01830 (11)0.00082 (7)0.00051 (7)0.00072 (7)
Geometric parameters (Å, º) top
C1—N11.479 (2)C8—C91.505 (3)
C1—C21.501 (3)C8—H8A0.9700
C1—H1A0.9700C8—H8B0.9700
C1—H1B0.9700C9—H9A0.9600
C2—N21.477 (2)C9—H9B0.9600
C2—H2A0.9700C9—H9C0.9600
C2—H2B0.9700N1—Co11.9575 (13)
C3—N31.485 (2)N1—H1C0.9000
C3—C41.500 (3)N1—H1D0.9000
C3—H3A0.9700N2—Co11.9588 (13)
C3—H3B0.9700N2—H2C0.9000
C4—N41.475 (2)N2—H2D0.9000
C4—H4A0.9700N3—Co11.9611 (13)
C4—H4B0.9700N3—H3C0.9000
C5—N51.477 (2)N3—H3D0.9000
C5—C61.513 (2)N4—Co11.9569 (13)
C5—H5A0.9700N4—H4C0.9000
C5—H5B0.9700N4—H4D0.9000
C6—C71.514 (2)N5—Co11.9822 (13)
C6—H6A0.9700N5—H5C0.9000
C6—H6B0.9700N5—H5D0.9000
C7—C81.518 (2)O1—H1E0.852 (10)
C7—H7A0.9700O1—H1F0.841 (10)
C7—H7B0.9700Cl1—Co12.2403 (4)
N1—C1—C2107.56 (14)H9A—C9—H9B109.5
N1—C1—H1A110.2C8—C9—H9C109.5
C2—C1—H1A110.2H9A—C9—H9C109.5
N1—C1—H1B110.2H9B—C9—H9C109.5
C2—C1—H1B110.2C1—N1—Co1109.70 (11)
H1A—C1—H1B108.5C1—N1—H1C109.7
N2—C2—C1106.15 (14)Co1—N1—H1C109.7
N2—C2—H2A110.5C1—N1—H1D109.7
C1—C2—H2A110.5Co1—N1—H1D109.7
N2—C2—H2B110.5H1C—N1—H1D108.2
C1—C2—H2B110.5C2—N2—Co1109.93 (10)
H2A—C2—H2B108.7C2—N2—H2C109.7
N3—C3—C4107.18 (14)Co1—N2—H2C109.7
N3—C3—H3A110.3C2—N2—H2D109.7
C4—C3—H3A110.3Co1—N2—H2D109.7
N3—C3—H3B110.3H2C—N2—H2D108.2
C4—C3—H3B110.3C3—N3—Co1109.55 (11)
H3A—C3—H3B108.5C3—N3—H3C109.8
N4—C4—C3107.89 (14)Co1—N3—H3C109.8
N4—C4—H4A110.1C3—N3—H3D109.8
C3—C4—H4A110.1Co1—N3—H3D109.8
N4—C4—H4B110.1H3C—N3—H3D108.2
C3—C4—H4B110.1C4—N4—Co1110.28 (11)
H4A—C4—H4B108.4C4—N4—H4C109.6
N5—C5—C6112.74 (14)Co1—N4—H4C109.6
N5—C5—H5A109.0C4—N4—H4D109.6
C6—C5—H5A109.0Co1—N4—H4D109.6
N5—C5—H5B109.0H4C—N4—H4D108.1
C6—C5—H5B109.0C5—N5—Co1119.79 (10)
H5A—C5—H5B107.8C5—N5—H5C107.4
C5—C6—C7112.26 (15)Co1—N5—H5C107.4
C5—C6—H6A109.2C5—N5—H5D107.4
C7—C6—H6A109.2Co1—N5—H5D107.4
C5—C6—H6B109.2H5C—N5—H5D106.9
C7—C6—H6B109.2H1E—O1—H1F111.3 (17)
H6A—C6—H6B107.9N4—Co1—N1174.92 (6)
C6—C7—C8113.34 (15)N4—Co1—N290.39 (6)
C6—C7—H7A108.9N1—Co1—N285.03 (6)
C8—C7—H7A108.9N4—Co1—N385.34 (6)
C6—C7—H7B108.9N1—Co1—N392.63 (6)
C8—C7—H7B108.9N2—Co1—N392.13 (6)
H7A—C7—H7B107.7N4—Co1—N591.10 (6)
C9—C8—C7112.99 (18)N1—Co1—N593.59 (6)
C9—C8—H8A109.0N2—Co1—N5176.89 (6)
C7—C8—H8A109.0N3—Co1—N590.71 (6)
C9—C8—H8B109.0N4—Co1—Cl189.52 (4)
C7—C8—H8B109.0N1—Co1—Cl192.57 (4)
H8A—C8—H8B107.8N2—Co1—Cl188.79 (4)
C8—C9—H9A109.5N3—Co1—Cl1174.78 (4)
C8—C9—H9B109.5N5—Co1—Cl188.49 (4)
N1—C1—C2—N250.28 (19)C1—N1—Co1—N379.47 (12)
N3—C3—C4—N448.28 (19)C1—N1—Co1—N5170.35 (12)
N5—C5—C6—C7179.58 (16)C1—N1—Co1—Cl1101.00 (11)
C5—C6—C7—C8177.60 (17)C2—N2—Co1—N4166.25 (11)
C6—C7—C8—C9176.9 (2)C2—N2—Co1—N115.94 (11)
C2—C1—N1—Co137.75 (17)C2—N2—Co1—N3108.40 (11)
C1—C2—N2—Co140.09 (16)C2—N2—Co1—Cl176.74 (10)
C4—C3—N3—Co138.51 (17)C3—N3—Co1—N415.27 (11)
C3—C4—N4—Co136.06 (16)C3—N3—Co1—N1169.40 (11)
C6—C5—N5—Co1170.27 (12)C3—N3—Co1—N2105.48 (11)
C4—N4—Co1—N280.28 (11)C3—N3—Co1—N575.78 (12)
C4—N4—Co1—N311.82 (11)C5—N5—Co1—N4161.69 (13)
C4—N4—Co1—N5102.45 (11)C5—N5—Co1—N120.28 (13)
C4—N4—Co1—Cl1169.07 (11)C5—N5—Co1—N3112.95 (13)
C1—N1—Co1—N212.44 (12)C5—N5—Co1—Cl172.21 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl30.902.393.2589 (14)162
N1—H1D···O10.902.123.018 (3)174
N3—H3C···Cl30.902.563.3641 (14)150
N4—H4D···Cl3i0.902.363.2597 (14)179
N4—H4C···Cl2ii0.902.513.3731 (15)161
N5—H5C···Cl3iii0.902.513.3605 (15)158
N5—H5D···Cl3i0.902.563.3784 (15)151
C3—H3B···Cl3iii0.972.733.616 (2)152
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+2; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CoCl(C5H13N)(C2H8N2)2]Cl2·H2O
Mr390.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.5214 (3), 7.2294 (2), 23.6225 (6)
β (°) 96.117 (2)
V3)1786.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa-APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.719, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
23262, 5510, 4506
Rint0.029
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.090, 1.10
No. of reflections5510
No. of parameters181
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.35

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl30.902.393.2589 (14)162.0
N1—H1D···O10.902.123.018 (3)173.8
N3—H3C···Cl30.902.563.3641 (14)149.6
N4—H4D···Cl3i0.902.363.2597 (14)178.8
N4—H4C···Cl2ii0.902.513.3731 (15)160.6
N5—H5C···Cl3iii0.902.513.3605 (15)158.2
N5—H5D···Cl3i0.902.563.3784 (15)150.7
C3—H3B···Cl3iii0.972.733.616 (2)151.9
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+2; (iii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

KA thanks the Department of Science and Technology, Goverment of India, for financial assistance and the Council of Scientific & Industrial Research–Human Resource Development Group, New Delhi, for support through a major research project.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175.  Google Scholar
First citationBailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2. SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKralova, K., Kissova, K., Svajlenova, O. & Vanco, J. (2004). Chem. Pap. 58, 357–361.  CAS Google Scholar
First citationOu, G.-C., Chen, H.-Y., Zhang, M. & Yuan, X.-Y. (2007). Acta Cryst. E63, m36–m38.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155–1161.  CrossRef CAS Google Scholar
First citationRajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Eur. J. Chem. 5, 620.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTweedy, B. G. (1964). Phytopathology, 55, 910–914.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m836-m837
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds