organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1680-o1681

3-Nitro­benzoic acid–3-methyl-4-nitro­pyridine 1-oxide (1/1)

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física, IFSC, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 13 May 2009; accepted 19 June 2009; online 24 June 2009)

The title adduct, C7H5NO4·C6H6N2O3, forms part of an ongoing study of the design of non-centrosymmetric systems based on 3-methy-4-nitro­pyridine 1-oxide. The components of the adduct are linked by inter­molecular O—H⋯O hydrogen bonds. The rings of the two components are nearly planar, with a dihedral angle of 11.9 (2)° between the planes. The supra­molecular structure shows that mol­ecules of the title complex are linked into sheets by a combination of strong O—H⋯O and weak C—H⋯O hydrogen bonds.

Related literature

For background information on the non-linear optical properties of 3-methyl-4-nitro­pyridine 1-oxide (POM) see: Sapriel et al. (1989[Sapriel, J., Hierle, R., Zyss, J. & Boissier, M. (1989). Appl. Phys. Lett. 55, 2594-2596.]). For the free mol­ecular systems POM and 3-nitro­benzoic acid (NBA), see: Baert et al. (1988[Baert, F., Schweiss, P., Heger, G. & More, M. (1988). J. Mol. Struct. 178, 29-48.]); Dhaneshwar et al. (1975[Dhaneshwar, N. N., Kulkarni, A. G., Tavale, S. S. & Pant, L. M. (1975). Acta Cryst. B31, 1978-1980.]). For hydrogen bonding, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Emsley (1984[Emsley, J. (1984). Complex and Chemistry: Structure and Bonding, Vol. 57, pp. 147-191. Berlin: Springer-Verlag.]). For a related structure, see: Moreno-Fuquen et al. (2002[Moreno-Fuquen, R., Montaño, A. M. & Atencio, R. (2002). Acta Cryst. E58, o623-o625.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4·C6H6N2O3

  • Mr = 321.25

  • Monoclinic, P 21 /n

  • a = 7.1221 (4) Å

  • b = 11.0660 (2) Å

  • c = 17.9921 (4) Å

  • β = 98.170 (4)°

  • V = 1403.62 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.961, Tmax = 0.985

  • 3668 measured reflections

  • 2481 independent reflections

  • 1511 reflections with I > 2σ(I)

  • Rint = 0.072

  • 2 standard reflections frequency: 120 min intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.191

  • S = 1.04

  • 2481 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O5i 0.86 (5) 1.73 (6) 2.578 (3) 170 (5)
C10—H10⋯O4ii 0.93 2.48 3.351 (4) 156
C2—H2⋯O1iii 0.93 2.55 3.371 (4) 148
C9—H9⋯O2iv 0.93 2.39 3.260 (4) 156
C13—H131⋯O3v 0.96 2.67 3.502 (4) 146
C11—H11⋯O5vi 0.93 2.40 3.270 (4) 156
C13—H132⋯O7vii 0.96 2.62 3.475 (4) 148
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+2, -z+1; (vi) -x+1, -y+2, -z+1; (vii) -x, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28/, 659.]).

Supporting information


Comment top

Within the family of crystal compounds having the N-oxide group, the 3-methyl-4-nitropyridine 1-oxide (POM) is one of the best electro-optic materials in the visible range (Sapriel et al., 1989). The title work is part of a series of structural studies on molecular complexes, formed by hydrogen bonds, with potential non-linear optical applications (Moreno-Fuquen et al., 2002). To complement the crystallographic information available on compounds based on POM complexes, to study its supramolecular behaviour, and to analyze the type of hydrogen-bonds formed in the adduct, a determination of the 3-nitrobenzoic acid (NBA) and POM, adduct (I), was undertaken. The free molecular systems POM and NBA have been reported in the literature (Baert et al., 1988; Dhaneshwar et al., 1975), respectivelly, and they can be used as reference systems to compare with the structural characteristics of (I). The title complex (I) is held together by a strong intermolecular hydrogen bond (Emsley, 1984) between the N—O group of the POM molecule and the O—H group of the NBA molecule (Table 1.). A displacement ellipsoid plot of (I), with the atomic numbering scheme is shown in Figure 1. The title compound shows an O3···O5 bond length of 2.578 (3) Å and O3—H31···O5 bond angle of 170 (5)°. The dihedral angle between the planes of the POM and MABA rings of (I) is 11.9 (2)°. The presence of an additional C10—H10···O4 intermolecular hydrogen bond allows the formation of R22(8) rings between the molecules in the adduct (I). The free NBA and other organic acids usually exist as dimeric pairs forming R22(8) rings between the molecules. In a first stage, for the formation of the adduct (I), the NBA molecule breaks the hydrogen bond compromised in the formation of the dimer and subsequently the NBA molecule fits the C—O bonds in order to form the new R22(8) ring with the POM molecule. Indeed, from symmetric C—O bonds (C···O = 1.256 (4) Å) in the free NBA molecule (Dhaneshwar et al., 1975), the C—O bond lengths change to 1.205 (3) Å and 1.311 (4) Å in the adduct (I). Additionally, the C(5)—C(7) bond length in the NBA free molecule changes from 1.488 (3) Å to 1.502 (4) Å, as a result of the formation of the title complex. The molecules which form the title adduct (I), are linked into sheets by a combination of O—H···O and C—H···O hydrogen bonds (Table 1) and these interactions define the bulk structure of the crystal. In a first substructure, the formation of a centrosymmetric rings generated by pairs of O—H···O and C—H···O hydrogen bonds is observed (Fig. 2). The carboxyl O3 atom of NBA molecule acts as hydrogen bond donor to N-oxide atom O5 of POM, in the molecule at (x, y, z) and C10 atom of POM in the molecule at (x, y, z) acts as hydrogen bond donor to carboxyl atom O4 in the molecule at (x,y,z) so forming by inversion a centrosymmetric R22(8) ring (Etter, 1990). In addition, atoms O3 and O5 in the molecule at (x,y,z) act as hydrogen bond acceptors from the atoms C11 and C13 in the molecule at (-1 - x, 2 - y, 1 - z) respectively, so forming by inversion R23(8) and R22(8) edge-fused centrosymmetric rings. Prolonging the growth of the crystal in the [-110] direction, the nitro O7 atom in the molecule at (x, y, z) acts as hydrogen bond acceptor from the atom C13 in the molecule at (-x + 1/2, y - 1/2,-z + 1/2), so forming R22(12) centrosymmetric ring. In a second substructure, atom C2 in the molecule at (x, y, z) acts as hydrogen bond donor to nitro O1 atom in the molecule at (-x + 3/2, 1/2 + y, 1/2 - z). In addition, atom O2 in the molecule at (x, y, z) acts as hydrogen bond donor to C9 atom in the molecule at (-x + 1/2, y - 1/2, -z + 1/2). The propagation of this interaction forms a C(5) (Etter, 1990) chain running along [010] direction (Fig. 3). The combination of these substructures is sufficient to generate a continuous framework structure. The presence of a centre of symmetry in the crystal inhibits the non-linear optical response.

Related literature top

For background information on the non-linear optical properties of 3-methyl-4-nitropyridine 1-oxide (POM) see: Sapriel et al. (1989). For the free molecular systems POM and 3-nitrobenzoic acid (NBA), see: Baert et al. (1988) and Dhaneshwar et al. (1975), respectivelly. For hydrogen bonding, see: Etter (1990); Emsley (1984). For a related structure, see: Moreno-Fuquen et al. (2002).

Experimental top

The synthesis of the title compound (I) was carried out by slow evaporation of equimolar quantities of 3-nitrobenzoic acid (0.805 g, 0.0048 mol) and 3-methyl-4-nitropyridine 1-oxide (0.739 g) in 150 ml of dry acetonitrile. Pale-yellow prisms of good quality, suitable for x-ray analysis with a melting point of 589 (1) K were obtained. The initial reagents were purchased from Aldrich Chemical Co., and were used without additional purification.

Refinement top

All H-atoms were located from difference Fourier maps and then they were treated as riding atoms [Caro—H= 0.93 A°, and Csp3—H= 0.96 A°, Uiso(H)=1.2Ueq(Caro), Uiso(H)= 1.5Ueq(Csp3)).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines show H-bonds.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(8), R23(8) and R22(12) centrosymmetric rings along [001]. Symmetry codes: (i) -1 - x, 2 - y, 1 - z; (ii) -2 - x, 1 - y, 1 - z.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of C(5) chains along [100]. Symmetry codes: (i) -x + 3/2, y + 1/2, 1/2 - z; (ii) -x + 1/2, y - 1/2, -z + 1/2.
3-Nitrobenzoic acid–3-methyl-4-nitropyridine 1-oxide (1/1) top
Crystal data top
C7H5NO4·C6H6N2O3F(000) = 664
Mr = 321.25Dx = 1.520 Mg m3
Monoclinic, P21/nMelting point: 589(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1221 (4) ÅCell parameters from 23 reflections
b = 11.0660 (2) Åθ = 4.9–8.7°
c = 17.9921 (4) ŵ = 0.13 mm1
β = 98.170 (4)°T = 291 K
V = 1403.62 (9) Å3Prism, pale-yellow
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1511 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.961, Tmax = 0.985l = 2121
3668 measured reflections2 standard reflections every 120 min
2481 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0995P)2 + 0.4787P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2481 reflectionsΔρmax = 0.38 e Å3
214 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C7H5NO4·C6H6N2O3V = 1403.62 (9) Å3
Mr = 321.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1221 (4) ŵ = 0.13 mm1
b = 11.0660 (2) ÅT = 291 K
c = 17.9921 (4) Å0.20 × 0.18 × 0.15 mm
β = 98.170 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1511 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.072
Tmin = 0.961, Tmax = 0.9852 standard reflections every 120 min
3668 measured reflections intensity decay: 1.1%
2481 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
2481 reflectionsΔρmin = 0.26 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5955 (4)0.7958 (3)0.22054 (17)0.0794 (8)
O20.7633 (4)0.9522 (3)0.20430 (17)0.0834 (9)
O30.0370 (4)1.0058 (2)0.39049 (17)0.0710 (8)
H310.124 (8)0.969 (4)0.410 (3)0.118 (18)*
O40.0269 (3)0.8270 (2)0.34367 (15)0.0641 (7)
O50.6973 (3)0.9189 (2)0.45814 (16)0.0722 (8)
O60.3065 (6)0.4261 (2)0.4071 (2)0.1102 (12)
O70.0643 (5)0.5349 (3)0.4190 (2)0.1020 (11)
N10.6283 (4)0.9028 (3)0.22704 (15)0.0593 (8)
N20.5917 (4)0.8218 (2)0.45025 (15)0.0507 (7)
N30.2371 (6)0.5211 (3)0.42153 (18)0.0710 (9)
C10.5010 (4)0.9786 (3)0.26571 (16)0.0459 (7)
C20.5435 (5)1.0985 (3)0.27801 (19)0.0561 (8)
H20.64921.13280.26140.067*
C30.4256 (5)1.1666 (3)0.3156 (2)0.0601 (9)
H30.45151.24820.32440.072*
C40.2683 (5)1.1149 (3)0.34055 (19)0.0536 (8)
H40.19011.16150.36630.064*
C50.2281 (4)0.9940 (3)0.32703 (16)0.0439 (7)
C60.3461 (4)0.9239 (3)0.28935 (17)0.0462 (7)
H60.32130.84230.28030.055*
C70.0623 (4)0.9326 (3)0.35400 (17)0.0484 (7)
C80.3601 (5)0.6276 (3)0.43511 (18)0.0511 (8)
C90.5191 (5)0.6308 (3)0.3996 (2)0.0616 (9)
H90.54710.56610.37000.074*
C100.6347 (5)0.7289 (3)0.40788 (19)0.0589 (9)
H100.74270.73160.38440.071*
C110.4381 (4)0.8176 (3)0.48658 (17)0.0487 (8)
H110.41430.88280.51650.058*
C120.3155 (4)0.7205 (3)0.48104 (17)0.0474 (7)
C130.1538 (5)0.7242 (3)0.5254 (2)0.0644 (9)
H1310.17370.78820.56170.077*
H1320.14570.64850.55080.077*
H1330.03790.73830.49220.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0657 (17)0.0703 (17)0.110 (2)0.0069 (14)0.0378 (15)0.0094 (15)
O20.0574 (15)0.110 (2)0.091 (2)0.0030 (14)0.0417 (14)0.0116 (15)
O30.0590 (15)0.0623 (14)0.102 (2)0.0044 (13)0.0461 (15)0.0127 (13)
O40.0551 (14)0.0555 (14)0.0876 (18)0.0110 (11)0.0306 (13)0.0063 (11)
O50.0588 (15)0.0717 (15)0.0941 (19)0.0270 (13)0.0386 (14)0.0219 (13)
O60.145 (3)0.0527 (16)0.133 (3)0.0154 (19)0.021 (2)0.0251 (17)
O70.087 (2)0.101 (2)0.122 (3)0.0437 (19)0.028 (2)0.0185 (18)
N10.0429 (15)0.077 (2)0.0615 (18)0.0043 (14)0.0185 (13)0.0065 (14)
N20.0415 (14)0.0544 (15)0.0592 (16)0.0065 (12)0.0173 (12)0.0074 (11)
N30.093 (3)0.0560 (18)0.0660 (18)0.0205 (18)0.0176 (18)0.0085 (14)
C10.0365 (15)0.0542 (17)0.0485 (16)0.0003 (13)0.0110 (13)0.0057 (13)
C20.0469 (18)0.0591 (19)0.063 (2)0.0071 (15)0.0113 (16)0.0153 (15)
C30.061 (2)0.0433 (16)0.077 (2)0.0100 (15)0.0142 (18)0.0037 (15)
C40.0505 (18)0.0485 (17)0.064 (2)0.0046 (15)0.0150 (16)0.0028 (14)
C50.0361 (15)0.0479 (16)0.0483 (16)0.0003 (13)0.0081 (13)0.0057 (12)
C60.0394 (15)0.0466 (16)0.0541 (17)0.0022 (13)0.0115 (13)0.0021 (12)
C70.0386 (16)0.0529 (18)0.0550 (17)0.0047 (14)0.0116 (14)0.0038 (14)
C80.0540 (18)0.0473 (16)0.0536 (18)0.0070 (15)0.0127 (15)0.0036 (13)
C90.072 (2)0.0547 (19)0.063 (2)0.0009 (17)0.0244 (18)0.0128 (15)
C100.0532 (19)0.065 (2)0.064 (2)0.0027 (17)0.0264 (16)0.0085 (16)
C110.0430 (16)0.0518 (17)0.0542 (18)0.0050 (14)0.0175 (14)0.0094 (13)
C120.0430 (16)0.0498 (16)0.0512 (17)0.0048 (14)0.0128 (13)0.0001 (13)
C130.055 (2)0.069 (2)0.074 (2)0.0162 (17)0.0272 (18)0.0095 (17)
Geometric parameters (Å, º) top
O1—N11.209 (4)C3—H30.9300
O2—N11.226 (3)C4—C51.383 (4)
O3—C71.311 (4)C4—H40.9300
O3—H310.86 (5)C5—C61.389 (4)
O4—C71.205 (3)C5—C71.502 (4)
O5—N21.307 (3)C6—H60.9300
O6—N31.206 (4)C8—C91.378 (5)
O7—N31.234 (4)C8—C121.384 (4)
N1—C11.480 (4)C9—C101.358 (5)
N2—C101.341 (4)C9—H90.9300
N2—C111.352 (4)C10—H100.9300
N3—C81.468 (4)C11—C121.380 (4)
C1—C21.372 (4)C11—H110.9300
C1—C61.377 (4)C12—C131.492 (4)
C2—C31.376 (5)C13—H1310.9600
C2—H20.9300C13—H1320.9600
C3—C41.388 (5)C13—H1330.9600
C7—O3—H31113 (3)C1—C6—H6120.9
O1—N1—O2123.7 (3)C5—C6—H6120.9
O1—N1—C1118.5 (3)O4—C7—O3124.1 (3)
O2—N1—C1117.8 (3)O4—C7—C5123.1 (3)
O5—N2—C10121.2 (3)O3—C7—C5112.8 (3)
O5—N2—C11117.9 (2)C9—C8—C12122.1 (3)
C10—N2—C11120.9 (3)C9—C8—N3117.0 (3)
O6—N3—O7122.5 (4)C12—C8—N3120.9 (3)
O6—N3—C8118.8 (4)C10—C9—C8119.7 (3)
O7—N3—C8118.4 (3)C10—C9—H9120.2
C2—C1—C6122.9 (3)C8—C9—H9120.2
C2—C1—N1119.2 (3)N2—C10—C9119.4 (3)
C6—C1—N1117.8 (3)N2—C10—H10120.3
C1—C2—C3118.2 (3)C9—C10—H10120.3
C1—C2—H2120.9N2—C11—C12122.6 (3)
C3—C2—H2120.9N2—C11—H11118.7
C2—C3—C4120.7 (3)C12—C11—H11118.7
C2—C3—H3119.7C11—C12—C8115.2 (3)
C4—C3—H3119.7C11—C12—C13117.9 (3)
C5—C4—C3119.9 (3)C8—C12—C13126.9 (3)
C5—C4—H4120.1C12—C13—H131109.5
C3—C4—H4120.1C12—C13—H132109.5
C4—C5—C6120.1 (3)H131—C13—H132109.5
C4—C5—C7122.2 (3)C12—C13—H133109.5
C6—C5—C7117.6 (3)H131—C13—H133109.5
C1—C6—C5118.2 (3)H132—C13—H133109.5
O1—N1—C1—C2175.7 (3)O6—N3—C8—C928.6 (5)
O2—N1—C1—C23.3 (4)O7—N3—C8—C9145.4 (4)
O1—N1—C1—C62.9 (4)O6—N3—C8—C12152.1 (4)
O2—N1—C1—C6178.1 (3)O7—N3—C8—C1234.0 (5)
C6—C1—C2—C30.1 (5)C12—C8—C9—C101.6 (5)
N1—C1—C2—C3178.5 (3)N3—C8—C9—C10177.7 (3)
C1—C2—C3—C40.2 (5)O5—N2—C10—C9178.4 (3)
C2—C3—C4—C50.6 (5)C11—N2—C10—C92.0 (5)
C3—C4—C5—C60.8 (5)C8—C9—C10—N20.4 (5)
C3—C4—C5—C7178.8 (3)O5—N2—C11—C12178.8 (3)
C2—C1—C6—C50.2 (5)C10—N2—C11—C121.6 (5)
N1—C1—C6—C5178.7 (3)N2—C11—C12—C80.4 (4)
C4—C5—C6—C10.6 (4)N2—C11—C12—C13178.3 (3)
C7—C5—C6—C1178.7 (3)C9—C8—C12—C112.0 (5)
C4—C5—C7—O4178.9 (3)N3—C8—C12—C11177.3 (3)
C6—C5—C7—O40.9 (5)C9—C8—C12—C13176.6 (3)
C4—C5—C7—O30.3 (4)N3—C8—C12—C134.1 (5)
C6—C5—C7—O3178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O5i0.86 (5)1.73 (6)2.578 (3)170 (5)
C10—H10···O4ii0.932.483.351 (4)156
C2—H2···O1iii0.932.553.371 (4)148
C9—H9···O2iv0.932.393.260 (4)156
C13—H131···O3v0.962.673.502 (4)146
C11—H11···O5vi0.932.403.270 (4)156
C13—H132···O7vii0.962.623.475 (4)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y+2, z+1; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H5NO4·C6H6N2O3
Mr321.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.1221 (4), 11.0660 (2), 17.9921 (4)
β (°) 98.170 (4)
V3)1403.62 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.961, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
3668, 2481, 1511
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.191, 1.04
No. of reflections2481
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O5i0.86 (5)1.73 (6)2.578 (3)170 (5)
C10—H10···O4ii0.932.483.351 (4)155.5
C2—H2···O1iii0.932.553.371 (4)147.5
C9—H9···O2iv0.932.393.260 (4)155.5
C13—H131···O3v0.962.673.502 (4)145.5
C11—H11···O5vi0.932.403.270 (4)155.8
C13—H132···O7vii0.962.623.475 (4)148.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y+2, z+1; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge license to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaert, F., Schweiss, P., Heger, G. & More, M. (1988). J. Mol. Struct. 178, 29–48.  CSD CrossRef CAS Web of Science Google Scholar
First citationDhaneshwar, N. N., Kulkarni, A. G., Tavale, S. S. & Pant, L. M. (1975). Acta Cryst. B31, 1978–1980.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEmsley, J. (1984). Complex and Chemistry: Structure and Bonding, Vol. 57, pp. 147–191. Berlin: Springer-Verlag.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMoreno-Fuquen, R., Montaño, A. M. & Atencio, R. (2002). Acta Cryst. E58, o623–o625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28/, 659.  CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSapriel, J., Hierle, R., Zyss, J. & Boissier, M. (1989). Appl. Phys. Lett. 55, 2594–2596.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1680-o1681
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds