organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1698-o1699

1-(2-Methyl­imidazo[1,2-a]pyridin-3-yl)-3,3-bis­­(methyl­sulfan­yl)prop-2-enone monohydrate

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Organique Structurale, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and cLaboratoire de Chimie Thérapeutique et Synthèse de Médicaments, UFR Sciences Pharmaceutiques, Université de Cocody, 01 BP V 34 Abidjan 01, Côte d'Ivoire
*Correspondence e-mail: bibilamayayabisseyou@yahoo.fr

(Received 15 May 2009; accepted 18 June 2009; online 27 June 2009)

The title compound, C13H14N2OS2·H2O, appears in the form of bimolecular aggregate in which mol­ecular components are linked by O—H⋯N hydrogen bonding. The nine-membered imidazo[1,2-a]pyridine system is almost planar, with a mean deviation of 0.026 (1) Å. An intra­molecular C—H⋯O hydrogen bond forms within the imidazo[1,2-a]pyridine system. The crystal packing is consolidated by O—H⋯O and C—H⋯O hydrogen bonds, forming a supra­molecular structure consisting of perpendicular infinite mol­ecular chains running along the a and c axes.

Related literature

For related structures, see: Bibila Mayaya Bisseyou et al. (2007[Bibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby, N. (2007). Acta Cryst. E63, o4758-o4759.], 2009[Bibila Mayaya Bisseyou, Y., Adohi-Krou, A., Ouattara, M. P., Sissouma, D., Zoro-Diama, E. G. & Ebby, N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 81-82.]); Duan et al.(2006[Duan, G.-Y., Tu, C.-B., Sun, Y.-W., Zhang, D.-T. & Wang, J.-W. (2006). Acta Cryst. E62, o1141-o1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2OS2·H2O

  • Mr = 296.41

  • Orthorhombic, P b c a

  • a = 5.1405 (1) Å

  • b = 17.7653 (3) Å

  • c = 31.3919 (6) Å

  • V = 2866.79 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 295 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.90, Tmax = 0.95

  • 11253 measured reflections

  • 4202 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.05

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.097

  • S = 0.99

  • 4202 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1 0.95 2.23 2.840 (4) 121
C3—H3⋯O1i 0.93 2.45 3.242 (4) 143
O2w—H22w⋯O2wii 0.82 2.05 2.862 (4) 168
O2w—H21w⋯N2 0.82 2.06 2.849 (4) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

As part of continuing work on heterocyclic compounds biologically active, we have synthesized new derivative in order to explore new potential activities or to improve known properties of this compound class. Asymmetric unit of title compound which crystallize as the monohydrate is consist of two independent molecular components connected between them by an O—H···N hydrogen bond forming thus one bimolecular aggregate (Fig. 1). In the imidazo[1,2-a]pyridine component, the values of bond lengths and angles of nine-membered imidazopyridine ring are similar to those found in previous studies (Bibila Mayaya Bisseyou et al., 2007, 2009, Duan et al., 2006). Imidazopyridine ring, essentially planar with mean deviation of 0.026 (1)Å, makes dihedral angles of 6.11 (23)° and 9.79 (15)° with P1(C9/C10/S1/C11) and P2(C9/C10/S2/C12) mean planes, respectively. Besides, we also note within of the same component, the presence of C—H···O intra-molecular hydrogen bond (Table 1) generating an S(6) motif (Bernstein et al., 1995). The three-dimensional crystal packing is consolidated by inter-bimolecular aggregate hydrogen bonds (Fig. 2). Indeed, each bimolecular unit is linked to three others via O—H···O and C—H···O hydrogen bonds (Table 1) forming thus a supra-molecular structure consisted of to two perpendicular infinite chain types: the first one is established by bimolecular aggregates along c axis; the second one is parallel to a axis and constituted only by water molecules in zigzag fashion.

Related literature top

For related crystal structures, see: Bibila Mayaya Bisseyou et al. (2007, 2009); Duan et al.(2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

1-(2-methylimidazo[1,2-a]pyridine-3-yl) acetyl (1 g, 6.2 mmol) was dissolved in distilled dimethyl sulfoxide (15 ml), and the carbon disulfur (0.41 ml, 6.8 mmol) was added. After cooling of the mixture at 0°C, sodium hydrure (0.36 g, 15.4 mmol) was added. After stirring for 30 minutes at 0°C, the mixture was stirred at ambient temperature during 4 h. Solution was then cooled at 0°C and methyl iodide (2.5 molar equivalents) was added dropwise. The resulting mixture was then left under stirring during 24 h then poured into 50 ml ice-cold water. The precipitate was filtered and recrystallized from mixture of water-dioxane (2:1) to obtain orange single crystals of title compound (1.31 g; yield, 80%, m.p.: 430 K)

Refinement top

The H atoms were all located in a difference of Fourier map. They were all initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.95–0.97Å, O—H=0.82Å and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom), after which their positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the a axis, showing the both perpendicular infinite chain types. The first one is established by bimolecular aggregates along c axis; the second one is parallel to a axis and constituted only by water molecules in zigzag fashion. H atoms not involved in hydrogen bonds have been omitted for clarity. Dashed lines indicate hydrogen bonds.
1-(2-Methylimidazo[1,2-a]pyridin-3-yl)-3,3-bis(methylsulfanyl)prop- 2-enone monohydrate top
Crystal data top
C13H14N2OS2·H2ODx = 1.373 Mg m3
Mr = 296.41Melting point: 430 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11253 reflections
a = 5.1405 (1) Åθ = 4–30°
b = 17.7653 (3) ŵ = 0.37 mm1
c = 31.3919 (6) ÅT = 295 K
V = 2866.79 (9) Å3Prism, orange
Z = 80.25 × 0.15 × 0.15 mm
F(000) = 1248
Data collection top
Nonius KappaCCD
diffractometer
2344 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.05
ϕ scansθmax = 30.5°, θmin = 1.3°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 07
Tmin = 0.90, Tmax = 0.95k = 025
11253 measured reflectionsl = 043
4202 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(F2) + (0.04P)2 + 3.2P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.99(Δ/σ)max = 0.000155
2066 reflectionsΔρmax = 0.18 e Å3
172 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C13H14N2OS2·H2OV = 2866.79 (9) Å3
Mr = 296.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.1405 (1) ŵ = 0.37 mm1
b = 17.7653 (3) ÅT = 295 K
c = 31.3919 (6) Å0.25 × 0.15 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4202 independent reflections
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
2344 reflections with I > 3σ(I)
Tmin = 0.90, Tmax = 0.95Rint = 0.05
11253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
2066 reflectionsΔρmin = 0.25 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01264 (14)0.40723 (4)0.05322 (3)0.0552
S20.11568 (16)0.46016 (4)0.14025 (3)0.0696
O10.3999 (4)0.30577 (10)0.05889 (6)0.0542
N10.7820 (4)0.21236 (11)0.09663 (7)0.0394
O2w0.9388 (4)0.07731 (12)0.22997 (7)0.0739
N20.8459 (5)0.18741 (13)0.16574 (8)0.0559
C40.8270 (5)0.20481 (13)0.05354 (9)0.0464
C70.9265 (5)0.17257 (14)0.12603 (9)0.0474
C90.2551 (5)0.35366 (14)0.12396 (9)0.0472
C50.6013 (5)0.25573 (13)0.11962 (8)0.0410
C31.0207 (6)0.15826 (14)0.04040 (10)0.0525
C21.1724 (6)0.11813 (15)0.06988 (11)0.0573
C11.1255 (6)0.12480 (15)0.11196 (11)0.0561
C60.6478 (5)0.23742 (16)0.16209 (9)0.0494
C100.0715 (5)0.40096 (14)0.10800 (9)0.0473
C80.4160 (5)0.30513 (13)0.09821 (9)0.0417
C110.2533 (6)0.47334 (16)0.04946 (12)0.0704
C130.5083 (7)0.2619 (2)0.20158 (10)0.0723
C120.0018 (9)0.4409 (2)0.19285 (13)0.0992
H21.30720.08770.06010.0687*
H40.71970.23260.03460.0557*
H90.28010.35300.15300.0562*
H11.22320.09900.13230.0665*
H1130.20780.52010.06230.1052*
H1120.28750.48110.01990.1058*
H1110.40500.45350.06300.1059*
H31.05300.15380.01130.0637*
H1320.53160.31520.20610.1075*
H1330.32560.25310.19890.1079*
H1310.57390.23570.22570.1077*
H22w1.08750.08240.23920.1108*
H1230.02060.38760.19910.1488*
H21w0.93530.11360.21400.1109*
H1220.18330.45440.19390.1486*
H1210.09600.47060.21240.1492*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0444 (4)0.0482 (4)0.0731 (5)0.0067 (3)0.0097 (4)0.0037 (4)
S20.0549 (5)0.0552 (4)0.0988 (7)0.0090 (4)0.0082 (4)0.0195 (4)
O10.0542 (11)0.0608 (12)0.0477 (13)0.0151 (9)0.0031 (10)0.0060 (9)
N10.0375 (11)0.0360 (10)0.0448 (12)0.0011 (9)0.0041 (10)0.0044 (9)
O2w0.0700 (15)0.0794 (15)0.0723 (16)0.0039 (12)0.0076 (12)0.0241 (12)
N20.0551 (15)0.0623 (15)0.0501 (15)0.0054 (12)0.0097 (12)0.0093 (12)
C40.0497 (16)0.0397 (13)0.0496 (17)0.0002 (11)0.0008 (12)0.0037 (12)
C70.0416 (15)0.0434 (13)0.0572 (18)0.0000 (11)0.0097 (13)0.0060 (13)
C90.0414 (14)0.0488 (14)0.0515 (16)0.0037 (12)0.0006 (13)0.0051 (12)
C50.0362 (13)0.0405 (13)0.0464 (16)0.0010 (11)0.0001 (12)0.0028 (11)
C30.0550 (17)0.0431 (14)0.0594 (18)0.0028 (13)0.0065 (14)0.0017 (12)
C20.0493 (17)0.0444 (15)0.078 (2)0.0084 (13)0.0018 (15)0.0043 (15)
C10.0497 (17)0.0448 (14)0.074 (2)0.0076 (13)0.0120 (15)0.0049 (14)
C60.0454 (15)0.0552 (16)0.0476 (17)0.0005 (13)0.0047 (13)0.0023 (13)
C100.0356 (14)0.0381 (13)0.068 (2)0.0033 (11)0.0012 (12)0.0048 (12)
C80.0356 (13)0.0400 (12)0.0495 (17)0.0016 (10)0.0039 (12)0.0026 (12)
C110.0485 (17)0.0517 (17)0.111 (3)0.0064 (14)0.0165 (19)0.0092 (18)
C130.076 (2)0.098 (2)0.0430 (18)0.015 (2)0.0014 (17)0.0030 (17)
C120.112 (3)0.105 (3)0.081 (3)0.021 (3)0.016 (2)0.035 (2)
Geometric parameters (Å, º) top
S1—C101.750 (3)C5—C61.393 (4)
S1—C111.806 (3)C5—C81.459 (3)
S2—C101.748 (3)C3—C21.405 (4)
S2—C121.791 (4)C3—H30.930
O1—C81.237 (3)C2—C11.348 (4)
N1—C41.379 (3)C2—H20.931
N1—C71.380 (3)C1—H10.932
N1—C51.406 (3)C6—C131.496 (4)
O2w—H22w0.822C11—H1130.952
O2w—H21w0.817C11—H1120.954
N2—C71.340 (4)C11—H1110.955
N2—C61.356 (3)C13—H1320.966
C4—C31.358 (4)C13—H1330.956
C4—H40.948C13—H1310.951
C7—C11.401 (4)C12—H1230.974
C9—C101.359 (3)C12—H1220.964
C9—C81.443 (4)C12—H1210.953
C9—H90.922
C10—S1—C11103.68 (15)C5—C6—N2111.3 (2)
C10—S2—C12103.50 (16)C5—C6—C13130.0 (3)
C4—N1—C7121.1 (2)N2—C6—C13118.7 (3)
C4—N1—C5131.9 (2)S1—C10—S2115.83 (15)
C7—N1—C5107.0 (2)S1—C10—C9121.4 (2)
H22w—O2w—H21w98.6S2—C10—C9122.7 (2)
C7—N2—C6106.4 (2)C5—C8—C9118.4 (2)
N1—C4—C3118.7 (3)C5—C8—O1120.6 (2)
N1—C4—H4117.7C9—C8—O1121.0 (2)
C3—C4—H4123.6S1—C11—H113110.7
N1—C7—N2110.8 (2)S1—C11—H112107.3
N1—C7—C1119.5 (3)H113—C11—H112109.3
N2—C7—C1129.7 (3)S1—C11—H111110.4
C10—C9—C8124.1 (3)H113—C11—H111109.6
C10—C9—H9118.0H112—C11—H111109.5
C8—C9—H9117.8C6—C13—H132110.3
N1—C5—C6104.5 (2)C6—C13—H133110.5
N1—C5—C8121.6 (2)H132—C13—H133107.1
C6—C5—C8133.9 (2)C6—C13—H131110.4
C4—C3—C2121.1 (3)H132—C13—H131108.6
C4—C3—H3118.7H133—C13—H131109.9
C2—C3—H3120.3S2—C12—H123109.3
C3—C2—C1120.1 (3)S2—C12—H122108.2
C3—C2—H2119.3H123—C12—H122110.5
C1—C2—H2120.5S2—C12—H121108.0
C7—C1—C2119.5 (3)H123—C12—H121110.3
C7—C1—H1118.4H122—C12—H121110.5
C2—C1—H1122.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.952.232.840 (4)121
C3—H3···O1i0.932.453.242 (4)143
O2w—H22w···O2wii0.822.052.862 (4)168
O2w—H21w···N20.822.062.849 (4)164
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2OS2·H2O
Mr296.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)5.1405 (1), 17.7653 (3), 31.3919 (6)
V3)2866.79 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.90, 0.95
No. of measured, independent and
observed [I > 3σ(I)] reflections
11253, 4202, 2344
Rint0.05
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.097, 0.99
No. of reflections2066
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.952.232.840 (4)121
C3—H3···O1i0.932.453.242 (4)143
O2w—H22w···O2wii0.822.052.862 (4)168
O2w—H21w···N20.822.062.849 (4)164
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of their diffractometer.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBibila Mayaya Bisseyou, Y., Adohi-Krou, A., Ouattara, M. P., Sissouma, D., Zoro-Diama, E. G. & Ebby, N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 81–82.  CAS Google Scholar
First citationBibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby, N. (2007). Acta Cryst. E63, o4758–o4759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, G.-Y., Tu, C.-B., Sun, Y.-W., Zhang, D.-T. & Wang, J.-W. (2006). Acta Cryst. E62, o1141–o1142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1698-o1699
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds