inorganic compounds
Potassium aquaterbium(III) oxalate sulfate
aLaboratory of Coordination Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142, People's Republic of China
*Correspondence e-mail: yaguangsun@yahoo.com.cn
Single crystals of KTb(C2O4)(SO4)(H2O), potassium aquaterbium(III) oxalate sulfate, were obtained under hydrothermal conditions. In the the Tb(III) atom is coordinated by four O atoms from two oxalate anions, three O atoms from three sulfate anions and one O atom from a water molecule within a TbO8 distorted square antiprismatic coordination. The potassium and terbium(III) atoms are bridged by the oxalate and sulfate groups, forming a three-dimensional structure. The coordination mode of the oxalate has not yet been reported. O—H⋯O hydrogen bonding between the water molecules and the oxygen atoms of oxalate and sulfate anions is also observed.
Related literature
For oxaltes and their coordination modes, see: Audebrand et al. (2003); Dean et al. (2004); Lu et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809019679/br2105sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019679/br2105Isup2.hkl
A mixture of FeSO4.7H2O (0.1 mmol),Tb(NO3)3.5H2O (0.1 mmol) and oxalic acid (0.2 mmol) in H2O (10 mL) was adjust to pH=6.8 with KOH aqueous solution, sealed in a 25 mL Teflon-lined bomb at 430 K for 4 days and then slowly cooled to room temperature at a rate of 5° K per hour. Colorless block crystals were obtained by filtration.The structure was determined by single-crystal diffraction.
Water H atoms were located in a difference Fourier maps and refined to restraint with O—H distance of 0.97Å and Uĩso(H) = 1.2Ueq(O). In order improve the R and wR factors,weak diffraction reflections in high 2 theta angles were omitted.Because of difficulties in obtaining convergence in the
the anisotropy of the atomic displacement parameters of some O and C atoms were restrained.Data collection: SMART (Bruker, 2001); cell
SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).KTb(C2O4)(SO4)(H2O) | F(000) = 744 |
Mr = 400.14 | Dx = 3.554 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1317 reflections |
a = 6.5274 (13) Å | θ = 2.8–27.2° |
b = 8.5072 (17) Å | µ = 10.32 mm−1 |
c = 14.591 (4) Å | T = 113 K |
β = 112.65 (3)° | Block, colorless |
V = 747.7 (3) Å3 | 0.06 × 0.04 × 0.02 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 1317 independent reflections |
Radiation source: rotating anode | 1079 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.057 |
ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −7→7 |
Tmin = 0.576, Tmax = 0.820 | k = −9→10 |
4812 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0171P)2] where P = (Fo2 + 2Fc2)/3 |
1317 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.92 e Å−3 |
24 restraints | Δρmin = −0.78 e Å−3 |
KTb(C2O4)(SO4)(H2O) | V = 747.7 (3) Å3 |
Mr = 400.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.5274 (13) Å | µ = 10.32 mm−1 |
b = 8.5072 (17) Å | T = 113 K |
c = 14.591 (4) Å | 0.06 × 0.04 × 0.02 mm |
β = 112.65 (3)° |
Bruker SMART 1000 CCD diffractometer | 1317 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1079 reflections with I > 2σ(I) |
Tmin = 0.576, Tmax = 0.820 | Rint = 0.057 |
4812 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 24 restraints |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.92 e Å−3 |
1317 reflections | Δρmin = −0.78 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.33208 (4) | 0.24112 (3) | 0.086605 (17) | 0.00425 (11) | |
K1 | 0.9670 (2) | −0.15405 (14) | 0.19899 (9) | 0.0144 (3) | |
S1 | 0.7406 (2) | 0.16467 (15) | −0.02448 (9) | 0.0057 (3) | |
O1 | 0.2682 (6) | 0.1255 (4) | 0.2251 (3) | 0.0079 (8) | |
O2 | 0.6044 (6) | 0.4446 (4) | 0.1557 (2) | 0.0074 (8) | |
O3 | 0.2189 (6) | 0.4466 (4) | 0.1717 (2) | 0.0079 (8) | |
O4 | 0.6523 (6) | 0.1083 (4) | 0.1984 (3) | 0.0065 (8) | |
O5 | 0.5568 (7) | 0.2364 (4) | −0.0040 (3) | 0.0077 (8) | |
O6 | 0.7540 (6) | −0.0053 (4) | −0.0015 (3) | 0.0080 (8) | |
O7 | 0.9493 (7) | 0.2388 (4) | 0.0409 (3) | 0.0096 (9) | |
O8 | 0.7035 (7) | 0.1876 (5) | −0.1285 (3) | 0.0119 (9) | |
O9 | 0.1774 (6) | 0.4070 (4) | −0.0544 (3) | 0.0072 (8) | |
H9A | 0.285 (8) | 0.475 (6) | −0.063 (5) | 0.04 (2)* | |
H9B | 0.047 (6) | 0.448 (9) | −0.107 (5) | 0.13 (4)* | |
C1 | 0.4137 (9) | 0.0364 (6) | 0.2801 (4) | 0.0043 (11) | |
C2 | 0.3644 (9) | 0.5312 (6) | 0.2329 (4) | 0.0052 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.00438 (17) | 0.00457 (17) | 0.00411 (16) | 0.00031 (11) | 0.00197 (12) | 0.00024 (10) |
K1 | 0.0141 (8) | 0.0162 (7) | 0.0164 (7) | −0.0038 (6) | 0.0099 (6) | −0.0061 (5) |
S1 | 0.0054 (8) | 0.0063 (7) | 0.0061 (7) | −0.0002 (6) | 0.0029 (6) | −0.0010 (5) |
O1 | 0.006 (2) | 0.009 (2) | 0.010 (2) | 0.0033 (17) | 0.0045 (18) | 0.0001 (15) |
O2 | 0.010 (2) | 0.0070 (19) | 0.008 (2) | −0.0028 (17) | 0.0067 (18) | −0.0041 (16) |
O3 | 0.008 (2) | 0.009 (2) | 0.006 (2) | −0.0019 (17) | 0.0013 (18) | −0.0020 (15) |
O4 | 0.0068 (12) | 0.0062 (11) | 0.0066 (11) | −0.0001 (9) | 0.0028 (9) | −0.0002 (8) |
O5 | 0.011 (2) | 0.0047 (19) | 0.013 (2) | 0.0011 (16) | 0.0096 (18) | −0.0002 (14) |
O6 | 0.011 (2) | 0.0035 (19) | 0.010 (2) | −0.0010 (17) | 0.0048 (17) | −0.0014 (14) |
O7 | 0.008 (2) | 0.009 (2) | 0.012 (2) | 0.0002 (17) | 0.0041 (18) | 0.0008 (16) |
O8 | 0.016 (3) | 0.014 (2) | 0.008 (2) | −0.0015 (19) | 0.0071 (19) | 0.0010 (16) |
O9 | 0.0063 (12) | 0.0077 (12) | 0.0083 (11) | −0.0003 (9) | 0.0036 (9) | 0.0017 (8) |
C1 | 0.0048 (14) | 0.0036 (14) | 0.0043 (13) | 0.0005 (9) | 0.0015 (10) | −0.0011 (9) |
C2 | 0.0052 (14) | 0.0046 (14) | 0.0057 (14) | 0.0003 (9) | 0.0019 (10) | 0.0010 (9) |
Tb1—O6i | 2.311 (4) | S1—O5 | 1.476 (3) |
Tb1—O5 | 2.323 (3) | S1—O6 | 1.480 (4) |
Tb1—O7ii | 2.325 (4) | O1—C1 | 1.238 (6) |
Tb1—O9 | 2.375 (4) | O1—K1vii | 2.900 (3) |
Tb1—O4 | 2.382 (4) | O1—K1ii | 3.016 (4) |
Tb1—O2 | 2.406 (4) | O2—C1vii | 1.261 (5) |
Tb1—O3 | 2.419 (3) | O2—K1viii | 2.909 (4) |
Tb1—O1 | 2.423 (3) | O3—C2 | 1.250 (6) |
K1—O8iii | 2.733 (4) | O3—K1vii | 2.744 (3) |
K1—O3iv | 2.744 (3) | O4—C2iv | 1.238 (6) |
K1—O1iv | 2.900 (3) | O4—K1viii | 3.105 (4) |
K1—O9i | 2.903 (4) | O6—Tb1i | 2.311 (4) |
K1—O2v | 2.909 (4) | O7—Tb1vi | 2.325 (4) |
K1—O6 | 2.992 (4) | O8—K1iii | 2.733 (4) |
K1—O1vi | 3.016 (4) | O9—K1i | 2.903 (4) |
K1—O4 | 3.032 (4) | O9—H9A | 0.96 (6) |
K1—O4v | 3.105 (4) | O9—H9B | 0.97 (6) |
K1—C2iv | 3.132 (5) | C1—O2iv | 1.261 (5) |
K1—C1vi | 3.141 (6) | C1—C2iv | 1.532 (7) |
K1—S1iii | 3.7251 (18) | C2—O4vii | 1.238 (6) |
S1—O8 | 1.455 (4) | C2—C1vii | 1.532 (7) |
S1—O7 | 1.470 (4) | ||
O6i—Tb1—O5 | 75.84 (12) | O1vi—K1—O4 | 80.09 (10) |
O6i—Tb1—O7ii | 80.00 (13) | O8iii—K1—O4v | 60.90 (11) |
O5—Tb1—O7ii | 132.93 (13) | O3iv—K1—O4v | 110.83 (11) |
O6i—Tb1—O9 | 96.65 (12) | O1iv—K1—O4v | 80.67 (10) |
O5—Tb1—O9 | 70.62 (12) | O9i—K1—O4v | 80.98 (10) |
O7ii—Tb1—O9 | 72.86 (12) | O2v—K1—O4v | 57.98 (10) |
O5—Tb1—O4 | 78.58 (12) | O6—K1—O4v | 136.94 (9) |
O7ii—Tb1—O4 | 138.98 (12) | O1vi—K1—O4v | 95.21 (11) |
O9—Tb1—O4 | 147.42 (11) | O4—K1—O4v | 153.72 (5) |
O6i—Tb1—O2 | 146.78 (11) | O8—S1—O7 | 111.1 (2) |
O5—Tb1—O2 | 74.00 (11) | O8—S1—O5 | 109.5 (2) |
O7ii—Tb1—O2 | 131.70 (12) | O7—S1—O5 | 108.3 (2) |
O9—Tb1—O2 | 86.26 (13) | O8—S1—O6 | 109.8 (2) |
O4—Tb1—O2 | 75.09 (13) | O7—S1—O6 | 108.2 (2) |
O6i—Tb1—O3 | 147.54 (12) | O5—S1—O6 | 109.9 (2) |
O5—Tb1—O3 | 133.59 (11) | C1—O1—Tb1 | 117.0 (3) |
O7ii—Tb1—O3 | 69.30 (12) | C1—O1—K1vii | 122.4 (3) |
O4—Tb1—O3 | 110.60 (12) | Tb1—O1—K1vii | 110.02 (12) |
O2—Tb1—O3 | 65.64 (12) | C1—O1—K1ii | 84.2 (3) |
O6i—Tb1—O1 | 90.64 (12) | Tb1—O1—K1ii | 121.87 (14) |
O5—Tb1—O1 | 144.76 (13) | K1vii—O1—K1ii | 98.21 (10) |
O9—Tb1—O1 | 144.20 (12) | C1vii—O2—Tb1 | 119.4 (3) |
O4—Tb1—O1 | 67.90 (12) | C1vii—O2—K1viii | 88.6 (3) |
O2—Tb1—O1 | 106.20 (11) | Tb1—O2—K1viii | 116.49 (13) |
O3—Tb1—O1 | 71.38 (11) | C2—O3—Tb1 | 119.0 (3) |
O8iii—K1—O3iv | 155.77 (13) | C2—O3—K1vii | 96.0 (3) |
O8iii—K1—O1iv | 133.26 (11) | Tb1—O3—K1vii | 115.52 (14) |
O3iv—K1—O1iv | 59.99 (10) | C2iv—O4—Tb1 | 118.6 (3) |
O8iii—K1—O9i | 74.43 (11) | C2iv—O4—K1 | 83.0 (3) |
O3iv—K1—O9i | 128.67 (11) | Tb1—O4—K1 | 139.97 (14) |
O1iv—K1—O9i | 74.15 (10) | C2iv—O4—K1viii | 105.0 (3) |
O8iii—K1—O2v | 68.22 (11) | Tb1—O4—K1viii | 110.44 (12) |
O3iv—K1—O2v | 87.98 (11) | K1—O4—K1viii | 93.58 (10) |
O1iv—K1—O2v | 114.22 (11) | S1—O5—Tb1 | 149.7 (2) |
O9i—K1—O2v | 134.04 (11) | S1—O6—Tb1i | 138.2 (2) |
O8iii—K1—O6 | 79.21 (11) | S1—O6—K1 | 126.8 (2) |
O3iv—K1—O6 | 112.22 (11) | Tb1i—O6—K1 | 94.79 (12) |
O1iv—K1—O6 | 122.12 (12) | S1—O7—Tb1vi | 144.5 (2) |
O9i—K1—O6 | 72.82 (10) | S1—O8—K1iii | 122.7 (2) |
O2v—K1—O6 | 123.02 (10) | Tb1—O9—K1i | 95.73 (12) |
O8iii—K1—O1vi | 63.92 (11) | Tb1—O9—H9A | 113 (4) |
O3iv—K1—O1vi | 96.12 (11) | K1i—O9—H9A | 113 (4) |
O1iv—K1—O1vi | 151.31 (6) | Tb1—O9—H9B | 149 (4) |
O9i—K1—O1vi | 133.59 (10) | K1i—O9—H9B | 75 (6) |
O2v—K1—O1vi | 44.18 (10) | H9A—O9—H9B | 97.7 (13) |
O6—K1—O1vi | 79.92 (11) | O1—C1—O2iv | 126.4 (5) |
O8iii—K1—O4 | 134.96 (11) | O1—C1—C2iv | 117.6 (4) |
O3iv—K1—O4 | 45.03 (10) | O2iv—C1—C2iv | 116.0 (5) |
O1iv—K1—O4 | 91.10 (10) | O4vii—C2—O3 | 127.1 (5) |
O9i—K1—O4 | 120.90 (11) | O4vii—C2—C1vii | 117.8 (5) |
O2v—K1—O4 | 104.49 (11) | O3—C2—C1vii | 115.0 (4) |
O6—K1—O4 | 68.10 (9) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z; (iii) −x+2, −y, −z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, y−1/2, −z+1/2; (vi) x+1, y, z; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O2ix | 0.96 (6) | 1.88 (4) | 2.731 (4) | 145 (5) |
O9—H9B···O3x | 0.96 (6) | 1.86 (3) | 2.787 (5) | 160 (9) |
O9—H9B···O7ix | 0.97 (6) | 2.83 (9) | 3.149 (5) | 100 (6) |
Symmetry codes: (ix) −x+1, −y+1, −z; (x) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | KTb(C2O4)(SO4)(H2O) |
Mr | 400.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 113 |
a, b, c (Å) | 6.5274 (13), 8.5072 (17), 14.591 (4) |
β (°) | 112.65 (3) |
V (Å3) | 747.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.32 |
Crystal size (mm) | 0.06 × 0.04 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.576, 0.820 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4812, 1317, 1079 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.051, 1.05 |
No. of reflections | 1317 |
No. of parameters | 127 |
No. of restraints | 24 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.78 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O2i | 0.96 (6) | 1.88 (4) | 2.731 (4) | 145 (5) |
O9—H9B···O3ii | 0.96 (6) | 1.86 (3) | 2.787 (5) | 160 (9) |
O9—H9B···O7i | 0.97 (6) | 2.83 (9) | 3.149 (5) | 100 (6) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z. |
Acknowledgements
This project was sponsored by SRF for ROCS, SEM, and the Research Foundation of Education Department of Liaoning Province (No. 2008581).
References
Audebrand, N., Raite, S. & Louer, D. (2003). Solid State Sci. 5, 783–794. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dean, P. A. W., Craig, D., Dance, I., Russell, V. & Scudder, M. (2004). Inorg. Chem. 43, 443–449. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lu, J., Li, Y., Zhao, K., Xu, J.-Q., Yu, J.-H., Li, G.-H., Zhang, X., Bie, H.-Y. & Wang, T.-G. (2004). Inorg. Chem. Commun. 7, 1154–1156. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, rationally design of novel inorganic componds based on alkali metal ions and rare earth ions are currently of great interest because of their potential applications in photoluminescent fields. For purpose of enriching the chemistry field of this compound family, we have successfully synthesized the title compound.
In the title compound, the coordination environments of the rare earth TbIII cations consist of eight O atoms which are associated with one water molecule, two sulfate groups and two oxalates. TbIII cations are at the shared apex of two dicapped rectangular pyramids (Fig.1). The K+ cations are surrounded by nine O atoms, including one water O atom, six O atoms from oxalates and two O atoms from sulfate groups.
Oxalates are of considerable interest because many of them are natural minerals and in addition, the oxalate anion can adopt different coordination modes to bind metals to form infinite chains, sheets and networks, leading to the rich structural chemistry (Lu et al., 2004; Dean et al., 2004; Audebrand et al., 2003). In the title compound, the oxalate ligand has an unique coordination mode (κ3-κ2-µ4)-(κ3-κ2-µ4)-µ6-ox2-. Fig.2 shows coordination mode of the oxalate and sulfate ligands in the title compuond.
Two adjacent TbIII ions were connected through the oxalates to form one-dimensional chain structure (see Fig.3), and then were connected through the sulfate anions and water molecules to form the three-dimensional framework (see Fig.4).