inorganic compounds
Tetraammonium diaquadiperoxidooctamolybdate(VI) tetrahydrate
aLaboratory of Advanced Catalysis for Sustainability, School of Chemistry, F11, The University of Sydney, Sydney, NSW 2006, Australia, and bCrystal Structure Analysis Facility, School of Chemistry, F11, The University of Sydney, Sydney, NSW 2006, Australia
*Correspondence e-mail: a.masters@chem.usyd.edu.au
The title compound (NH4)4[Mo8O24(O2)2(H2O)2]·4H2O, consists of an octamolybdate cluster with a crystallographic centre of symmetry. The clusters pack in a cubic close packing arrangement defining channels containing water molecules and ammonium cations, which exhibit hydrogen bonding with neighbouring clusters. Hydrogen bonding also exists between the coordinated water molecules of one cluster with one of the O atoms of the peroxido fragment in a neighbouring cluster.
Related literature
For work on polyoxidomolybdates, see: Pope (1983); Pope & Müller (2001); Hill (1998). Baerwald (1885) probably reported the first peroxidomolybdate. Stomberg et al. have prepared a range of peroxidomolybdates and obtained crystal structures of these species, see: Larking & Stomberg (1970, 1972); Olson & Stomberg (1996, 1997a,b); Persdotter et al. (1986a,b,c); Stomberg (1968, 1969, 1970, 1988a,b, 1992, 1995); Stomberg & Trysberg (1969); Stomberg & Olson (1996); Trysberg & Stomberg (1968, 1981). The versatile MoO6 octahedron building block [see: Pope & Müller (1991); Chen & Zubieta (1992)] results in an exceptionally large family of polyoxidomolybdates, see: Michailovski & Patzke (2006). For a review of the structural chemistry of peroxidomolybdates, see: Dickman & Pope (1994): Sergienko (2008). The tetraammonium salt of the centrosymmetric [Mo8O24(O2)2(H2O)2]4− anion has been characterized with moderate precision, see: Trysberg & Stomberg (1981): Olson & Stomberg (1997a). For bonds lengths in polyoxidomolybdates, see: Feng & Mao (2004); Long et al. (2003); Shi et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1995); cell SAINT (Bruker, 1995); data reduction: SAINT and XPREP (Bruker, 1995; Coppens et al., 1965); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.7 (Hall et al., 2000), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809023460/br2108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809023460/br2108Isup2.hkl
Ammonium molybdate tetrahydrate (10 g, 8.1 mmol) was dissolved in a solution of hydrogen peroxide (30%, 50 ml) acidified to pH 2 with nitric acid (70%, 5 ml). Slow evaporation of the yellow solution afforded crystals of the title compound (7.45 g, 93%). Crystals suitable for XRD studies were obtained from an aqueous solution of the complex that was kept at 288 K and 80% humidity in order to reduce the rate of evaporation.
O-bound H atoms were located in the difference Fourier map and refined with bond length restraints of 0.95 (1) Å with Uiso(H) 1.5 Ueq(O).
Data collection: SMART (Bruker, 1995); cell
SAINT (Bruker, 1995); data reduction: SAINT and XPREP (Bruker, 1995; Coppens et al., 1965); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.7 (Hall et al., 2000), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at 50% probability level. Water solvent and ammonnium ions omitted for clarity. Symmetry code used for generating equivalent atoms: 1 - x, -y, 1 - z. | |
Fig. 2. View along (a) the a axis and (b) the b axis of the crystal lattice of the title complex. |
(NH4)4[Mo8O24(O2)2(H2O)2]·4H2O | F(000) = 1328 |
Mr = 1395.78 | Dx = 3.157 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1023 reflections |
a = 10.405 (3) Å | θ = 2.8–28.3° |
b = 7.8706 (19) Å | µ = 3.43 mm−1 |
c = 18.063 (4) Å | T = 150 K |
β = 96.991 (4)° | Blade, yellow |
V = 1468.3 (6) Å3 | 0.32 × 0.19 × 0.08 mm |
Z = 2 |
Bruker SMART 1000 CCD diffractometer | 3542 independent reflections |
Radiation source: sealed tube | 3434 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: gaussian (XPREP; Bruker, 1995; Coppens et al., 1965) | h = −13→13 |
Tmin = 0.398, Tmax = 0.773 | k = −10→10 |
14005 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.043 | Only H-atom coordinates refined |
S = 1.16 | w = 1/[σ2(Fo2) + (0.016P)2 + 2.2853P] where P = (Fo2 + 2Fc2)/3 |
3542 reflections | (Δ/σ)max = 0.001 |
250 parameters | Δρmax = 1.02 e Å−3 |
14 restraints | Δρmin = −0.70 e Å−3 |
(NH4)4[Mo8O24(O2)2(H2O)2]·4H2O | V = 1468.3 (6) Å3 |
Mr = 1395.78 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.405 (3) Å | µ = 3.43 mm−1 |
b = 7.8706 (19) Å | T = 150 K |
c = 18.063 (4) Å | 0.32 × 0.19 × 0.08 mm |
β = 96.991 (4)° |
Bruker SMART 1000 CCD diffractometer | 3542 independent reflections |
Absorption correction: gaussian (XPREP; Bruker, 1995; Coppens et al., 1965) | 3434 reflections with I > 2σ(I) |
Tmin = 0.398, Tmax = 0.773 | Rint = 0.032 |
14005 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 14 restraints |
wR(F2) = 0.043 | Only H-atom coordinates refined |
S = 1.16 | Δρmax = 1.02 e Å−3 |
3542 reflections | Δρmin = −0.70 e Å−3 |
250 parameters |
Experimental. attached with Exxon Paratone N, to a short length of fibre supported on a thin piece of copper wire inserted in a copper mounting pin. The crystal was quenched in a cold nitrogen gas stream from an Oxford Cryosystems Cryostream. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.578257 (18) | 0.03860 (2) | 0.654717 (10) | 0.00883 (5) | |
Mo2 | 0.267481 (18) | 0.07806 (2) | 0.612704 (10) | 0.00964 (5) | |
Mo3 | 0.153081 (18) | 0.16838 (2) | 0.442190 (11) | 0.00992 (5) | |
Mo4 | 0.473839 (18) | 0.21902 (2) | 0.486860 (10) | 0.00802 (5) | |
O1 | 0.75337 (18) | 0.1060 (2) | 0.69344 (10) | 0.0214 (4) | |
O2 | 0.65823 (18) | 0.2109 (2) | 0.72269 (10) | 0.0216 (4) | |
O3 | 0.54977 (16) | −0.1215 (2) | 0.71260 (9) | 0.0146 (3) | |
O4 | 0.42192 (15) | 0.1707 (2) | 0.66940 (9) | 0.0111 (3) | |
O5 | 0.59440 (16) | 0.2362 (2) | 0.56376 (9) | 0.0117 (3) | |
O6 | 0.25417 (17) | −0.1077 (2) | 0.65969 (9) | 0.0153 (3) | |
O7 | 0.15724 (16) | 0.2132 (2) | 0.64528 (10) | 0.0154 (3) | |
O8 | 0.17259 (16) | 0.0052 (2) | 0.51832 (9) | 0.0123 (3) | |
O9 | 0.32211 (15) | 0.2731 (2) | 0.52672 (9) | 0.0112 (3) | |
O10 | 0.06078 (16) | 0.3204 (2) | 0.47923 (10) | 0.0154 (3) | |
O11 | 0.05378 (17) | 0.0689 (2) | 0.37343 (10) | 0.0178 (4) | |
O12 | 0.20013 (18) | 0.3722 (2) | 0.36953 (10) | 0.0165 (3) | |
O13 | 0.32947 (15) | 0.0976 (2) | 0.41274 (9) | 0.0108 (3) | |
O14 | 0.50583 (16) | 0.3819 (2) | 0.42998 (9) | 0.0133 (3) | |
O15 | 0.55751 (15) | 0.02784 (19) | 0.43622 (9) | 0.0095 (3) | |
O16 | 0.1645 (2) | 0.5543 (2) | 0.69018 (11) | 0.0235 (4) | |
O17 | 0.89009 (18) | 0.3251 (2) | 0.61140 (10) | 0.0181 (4) | |
N1 | 0.7945 (2) | 0.3830 (3) | 0.45833 (12) | 0.0163 (4) | |
N2 | 0.4450 (3) | 0.5128 (3) | 0.72139 (13) | 0.0225 (5) | |
H12A | 0.203 (3) | 0.354 (5) | 0.3179 (7) | 0.034* | |
H12B | 0.162 (3) | 0.481 (2) | 0.372 (2) | 0.034* | |
H16B | 0.128 (3) | 0.597 (4) | 0.7317 (13) | 0.034* | |
H16A | 0.135 (3) | 0.441 (2) | 0.691 (2) | 0.034* | |
H17A | 0.854 (3) | 0.267 (4) | 0.6492 (15) | 0.034* | |
H17B | 0.9770 (14) | 0.290 (4) | 0.615 (2) | 0.034* | |
H1B | 0.8775 (17) | 0.434 (4) | 0.465 (2) | 0.034* | |
H1A | 0.728 (2) | 0.462 (4) | 0.463 (2) | 0.034* | |
H1C | 0.797 (3) | 0.361 (5) | 0.4069 (7) | 0.034* | |
H1D | 0.797 (4) | 0.303 (4) | 0.4976 (14) | 0.034* | |
H2A | 0.3570 (14) | 0.546 (5) | 0.716 (2) | 0.034* | |
H2B | 0.447 (4) | 0.405 (2) | 0.6981 (19) | 0.034* | |
H2C | 0.468 (3) | 0.505 (5) | 0.7736 (7) | 0.034* | |
H2D | 0.494 (3) | 0.589 (4) | 0.6960 (18) | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.00872 (9) | 0.00944 (9) | 0.00819 (9) | 0.00024 (6) | 0.00051 (7) | −0.00073 (6) |
Mo2 | 0.00888 (9) | 0.01032 (9) | 0.00991 (9) | −0.00013 (7) | 0.00191 (7) | −0.00078 (7) |
Mo3 | 0.00759 (9) | 0.01116 (9) | 0.01077 (9) | 0.00088 (7) | 0.00020 (7) | −0.00090 (7) |
Mo4 | 0.00759 (9) | 0.00779 (9) | 0.00865 (9) | 0.00016 (6) | 0.00085 (7) | −0.00025 (6) |
O1 | 0.0209 (9) | 0.0228 (9) | 0.0195 (9) | −0.0036 (8) | −0.0015 (7) | −0.0021 (7) |
O2 | 0.0199 (9) | 0.0253 (10) | 0.0186 (9) | −0.0046 (8) | −0.0013 (7) | −0.0022 (7) |
O3 | 0.0155 (8) | 0.0143 (8) | 0.0137 (8) | 0.0014 (7) | 0.0009 (6) | 0.0009 (6) |
O4 | 0.0108 (7) | 0.0116 (7) | 0.0111 (7) | 0.0002 (6) | 0.0016 (6) | −0.0033 (6) |
O5 | 0.0115 (8) | 0.0109 (7) | 0.0126 (8) | −0.0006 (6) | 0.0012 (6) | −0.0001 (6) |
O6 | 0.0167 (8) | 0.0146 (8) | 0.0148 (8) | −0.0021 (7) | 0.0030 (7) | −0.0002 (6) |
O7 | 0.0119 (8) | 0.0166 (8) | 0.0183 (8) | 0.0013 (6) | 0.0045 (7) | −0.0031 (7) |
O8 | 0.0120 (7) | 0.0119 (7) | 0.0129 (8) | −0.0017 (6) | 0.0010 (6) | −0.0009 (6) |
O9 | 0.0105 (7) | 0.0099 (7) | 0.0132 (8) | −0.0002 (6) | 0.0010 (6) | −0.0007 (6) |
O10 | 0.0108 (8) | 0.0181 (8) | 0.0177 (8) | 0.0022 (7) | 0.0029 (6) | −0.0019 (7) |
O11 | 0.0145 (8) | 0.0201 (9) | 0.0177 (8) | 0.0001 (7) | −0.0019 (7) | −0.0040 (7) |
O12 | 0.0211 (9) | 0.0143 (8) | 0.0144 (8) | 0.0035 (7) | 0.0031 (7) | 0.0034 (7) |
O13 | 0.0093 (7) | 0.0116 (7) | 0.0113 (7) | −0.0001 (6) | 0.0001 (6) | −0.0013 (6) |
O14 | 0.0144 (8) | 0.0123 (8) | 0.0129 (8) | 0.0003 (6) | 0.0005 (6) | 0.0008 (6) |
O15 | 0.0090 (7) | 0.0100 (7) | 0.0093 (7) | 0.0008 (6) | 0.0008 (6) | −0.0012 (6) |
O16 | 0.0344 (11) | 0.0182 (9) | 0.0186 (9) | −0.0031 (8) | 0.0056 (8) | −0.0005 (7) |
O17 | 0.0171 (9) | 0.0166 (8) | 0.0207 (9) | 0.0037 (7) | 0.0023 (7) | 0.0026 (7) |
N1 | 0.0146 (10) | 0.0173 (10) | 0.0166 (10) | −0.0010 (8) | −0.0004 (8) | −0.0002 (8) |
N2 | 0.0322 (13) | 0.0187 (11) | 0.0159 (10) | −0.0009 (10) | 0.0001 (9) | 0.0021 (9) |
Mo1—O3 | 1.6864 (17) | Mo4—O15 | 2.0131 (16) |
Mo1—O1 | 1.9443 (19) | Mo4—O13 | 2.1148 (16) |
Mo1—O2 | 1.9468 (19) | Mo4—O15i | 2.4335 (16) |
Mo1—O13i | 1.9599 (16) | O1—O2 | 1.438 (3) |
Mo1—O4 | 1.9755 (16) | O12—H12A | 0.947 (10) |
Mo1—O15i | 2.0983 (16) | O12—H12B | 0.949 (10) |
Mo1—O5 | 2.2836 (17) | O13—Mo1i | 1.9599 (16) |
Mo2—O6 | 1.7045 (18) | O15—Mo1i | 2.0983 (16) |
Mo2—O7 | 1.7200 (17) | O15—Mo2i | 2.2768 (16) |
Mo2—O4 | 1.9397 (16) | O15—Mo4i | 2.4335 (16) |
Mo2—O8 | 1.9496 (16) | O16—H16B | 0.94 (3) |
Mo2—O15i | 2.2768 (16) | O16—H16A | 0.943 (10) |
Mo2—O9 | 2.3037 (17) | O17—H17A | 0.94 (3) |
Mo3—O11 | 1.7062 (18) | O17—H17B | 0.939 (10) |
Mo3—O10 | 1.7198 (17) | N1—H1B | 0.948 (10) |
Mo3—O8 | 1.8744 (17) | N1—H1A | 0.94 (3) |
Mo3—O13 | 2.0493 (17) | N1—H1C | 0.948 (10) |
Mo3—O12 | 2.1663 (18) | N1—H1D | 0.95 (3) |
Mo3—O9 | 2.3348 (16) | N2—H2A | 0.946 (10) |
Mo4—O14 | 1.7007 (17) | N2—H2B | 0.945 (10) |
Mo4—O5 | 1.7600 (16) | N2—H2C | 0.946 (10) |
Mo4—O9 | 1.8626 (17) | N2—H2D | 0.94 (3) |
O3—Mo1—O1 | 102.03 (8) | O12—Mo3—O9 | 85.81 (6) |
O3—Mo1—O2 | 102.90 (8) | O14—Mo4—O5 | 104.22 (8) |
O1—Mo1—O2 | 43.38 (8) | O14—Mo4—O9 | 107.38 (8) |
O3—Mo1—O13i | 96.49 (8) | O5—Mo4—O9 | 103.51 (8) |
O1—Mo1—O13i | 82.20 (8) | O14—Mo4—O15 | 99.30 (7) |
O2—Mo1—O13i | 124.68 (8) | O5—Mo4—O15 | 96.32 (7) |
O3—Mo1—O4 | 95.75 (8) | O9—Mo4—O15 | 141.30 (7) |
O1—Mo1—O4 | 123.99 (8) | O14—Mo4—O13 | 97.71 (7) |
O2—Mo1—O4 | 81.05 (8) | O5—Mo4—O13 | 156.59 (7) |
O13i—Mo1—O4 | 147.69 (7) | O9—Mo4—O13 | 77.16 (7) |
O3—Mo1—O15i | 98.44 (7) | O15—Mo4—O13 | 71.81 (6) |
O1—Mo1—O15i | 149.52 (7) | O14—Mo4—O15i | 175.07 (7) |
O2—Mo1—O15i | 149.62 (7) | O5—Mo4—O15i | 75.11 (7) |
O13i—Mo1—O15i | 73.21 (7) | O9—Mo4—O15i | 77.47 (6) |
O4—Mo1—O15i | 75.48 (6) | O15—Mo4—O15i | 76.00 (7) |
O3—Mo1—O5 | 171.45 (7) | O13—Mo4—O15i | 82.33 (6) |
O1—Mo1—O5 | 85.71 (7) | O2—O1—Mo1 | 68.40 (11) |
O2—Mo1—O5 | 85.18 (7) | O1—O2—Mo1 | 68.21 (11) |
O13i—Mo1—O5 | 80.85 (7) | Mo2—O4—Mo1 | 111.97 (8) |
O4—Mo1—O5 | 82.64 (6) | Mo4—O5—Mo1 | 114.05 (8) |
O15i—Mo1—O5 | 73.02 (6) | Mo3—O8—Mo2 | 115.98 (8) |
O6—Mo2—O7 | 105.20 (9) | Mo4—O9—Mo2 | 113.49 (7) |
O6—Mo2—O4 | 99.89 (8) | Mo4—O9—Mo3 | 105.84 (7) |
O7—Mo2—O4 | 97.53 (8) | Mo2—O9—Mo3 | 88.71 (6) |
O6—Mo2—O8 | 96.89 (8) | Mo3—O12—H12A | 121 (2) |
O7—Mo2—O8 | 101.14 (8) | Mo3—O12—H12B | 121 (2) |
O4—Mo2—O8 | 150.60 (7) | H12A—O12—H12B | 104 (3) |
O6—Mo2—O15i | 89.80 (7) | Mo1i—O13—Mo3 | 146.31 (9) |
O7—Mo2—O15i | 163.24 (7) | Mo1i—O13—Mo4 | 106.07 (7) |
O4—Mo2—O15i | 72.07 (6) | Mo3—O13—Mo4 | 107.61 (7) |
O8—Mo2—O15i | 84.07 (6) | Mo4—O15—Mo1i | 104.76 (7) |
O6—Mo2—O9 | 161.61 (7) | Mo4—O15—Mo2i | 149.38 (8) |
O7—Mo2—O9 | 92.75 (7) | Mo1i—O15—Mo2i | 95.68 (6) |
O4—Mo2—O9 | 81.31 (6) | Mo4—O15—Mo4i | 104.00 (7) |
O8—Mo2—O9 | 75.33 (6) | Mo1i—O15—Mo4i | 97.11 (6) |
O15i—Mo2—O9 | 73.00 (6) | Mo2i—O15—Mo4i | 95.65 (6) |
O11—Mo3—O10 | 106.56 (9) | H16B—O16—H16A | 99 (3) |
O11—Mo3—O8 | 102.80 (8) | H17A—O17—H17B | 105 (3) |
O10—Mo3—O8 | 101.94 (8) | H1B—N1—H1A | 112 (3) |
O11—Mo3—O13 | 99.70 (8) | H1B—N1—H1C | 94 (3) |
O10—Mo3—O13 | 148.24 (7) | H1A—N1—H1C | 108 (3) |
O8—Mo3—O13 | 89.08 (7) | H1B—N1—H1D | 104 (3) |
O11—Mo3—O12 | 93.46 (8) | H1A—N1—H1D | 110 (3) |
O10—Mo3—O12 | 84.18 (8) | H1C—N1—H1D | 128 (3) |
O8—Mo3—O12 | 159.99 (7) | H2A—N2—H2B | 106 (3) |
O13—Mo3—O12 | 76.61 (7) | H2A—N2—H2C | 104 (3) |
O11—Mo3—O9 | 168.36 (7) | H2B—N2—H2C | 112 (3) |
O10—Mo3—O9 | 84.95 (7) | H2A—N2—H2D | 111 (3) |
O8—Mo3—O9 | 75.90 (6) | H2B—N2—H2D | 108 (3) |
O13—Mo3—O9 | 68.81 (6) | H2C—N2—H2D | 116 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12A···O2ii | 0.95 (1) | 1.80 (2) | 2.715 (3) | 161 (3) |
O12—H12A···O1ii | 0.95 (1) | 2.39 (2) | 3.299 (3) | 161 (3) |
O12—H12B···O17iii | 0.95 (1) | 1.66 (1) | 2.599 (3) | 171 (4) |
O16—H16B···O4iv | 0.94 (3) | 2.01 (3) | 2.939 (3) | 170 (3) |
O16—H16A···O7 | 0.94 (1) | 2.00 (2) | 2.803 (3) | 142 (3) |
O17—H17A···O1 | 0.94 (3) | 1.88 (2) | 2.776 (3) | 159 (3) |
O17—H17B···O7v | 0.94 (1) | 1.98 (1) | 2.909 (3) | 169 (3) |
N1—H1B···O10v | 0.95 (1) | 2.09 (3) | 2.795 (3) | 130 (3) |
N1—H1B···O10iii | 0.95 (1) | 2.24 (3) | 2.929 (3) | 129 (3) |
N1—H1A···O9iii | 0.94 (3) | 2.16 (2) | 2.992 (3) | 146 (3) |
N1—H1A···O14 | 0.94 (3) | 2.40 (3) | 2.985 (3) | 120 (3) |
N1—H1C···O16iii | 0.95 (1) | 1.96 (2) | 2.811 (3) | 148 (3) |
N1—H1C···O6i | 0.95 (1) | 2.36 (3) | 3.038 (3) | 128 (3) |
N1—H1D···O17 | 0.95 (3) | 2.17 (3) | 2.859 (3) | 129 (3) |
N1—H1D···O8i | 0.95 (3) | 2.47 (3) | 3.097 (3) | 124 (3) |
N1—H1D···O5 | 0.95 (3) | 2.60 (3) | 3.203 (3) | 122 (3) |
N2—H2A···O16 | 0.95 (1) | 2.00 (1) | 2.923 (3) | 164 (3) |
N2—H2B···O4 | 0.95 (1) | 1.93 (1) | 2.852 (3) | 165 (3) |
N2—H2C···O11vi | 0.95 (1) | 2.00 (2) | 2.912 (3) | 162 (3) |
N2—H2C···O7iv | 0.95 (1) | 2.65 (3) | 3.169 (3) | 115 (3) |
N2—H2D···O3vii | 0.94 (3) | 2.36 (3) | 3.089 (3) | 134 (3) |
N2—H2D···O14iii | 0.94 (3) | 2.29 (3) | 2.961 (3) | 128 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y+1/2, −z+3/2; (v) x+1, y, z; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (NH4)4[Mo8O24(O2)2(H2O)2]·4H2O |
Mr | 1395.78 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 10.405 (3), 7.8706 (19), 18.063 (4) |
β (°) | 96.991 (4) |
V (Å3) | 1468.3 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.43 |
Crystal size (mm) | 0.32 × 0.19 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Gaussian (XPREP; Bruker, 1995; Coppens et al., 1965) |
Tmin, Tmax | 0.398, 0.773 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14005, 3542, 3434 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.043, 1.16 |
No. of reflections | 3542 |
No. of parameters | 250 |
No. of restraints | 14 |
H-atom treatment | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 1.02, −0.70 |
Computer programs: SMART (Bruker, 1995), SAINT (Bruker, 1995), SAINT and XPREP (Bruker, 1995; Coppens et al., 1965), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.7 (Hall et al., 2000), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12A···O2i | 0.947 (10) | 1.802 (15) | 2.715 (3) | 161 (3) |
O12—H12A···O1i | 0.947 (10) | 2.391 (16) | 3.299 (3) | 161 (3) |
O12—H12B···O17ii | 0.949 (10) | 1.658 (12) | 2.599 (3) | 171 (4) |
O16—H16B···O4iii | 0.94 (3) | 2.01 (3) | 2.939 (3) | 170 (3) |
O16—H16A···O7 | 0.943 (10) | 2.00 (2) | 2.803 (3) | 142 (3) |
O17—H17A···O1 | 0.94 (3) | 1.883 (16) | 2.776 (3) | 159 (3) |
O17—H17B···O7iv | 0.939 (10) | 1.983 (12) | 2.909 (3) | 169 (3) |
N1—H1B···O10iv | 0.948 (10) | 2.09 (3) | 2.795 (3) | 130 (3) |
N1—H1B···O10ii | 0.948 (10) | 2.24 (3) | 2.929 (3) | 129 (3) |
N1—H1A···O9ii | 0.94 (3) | 2.16 (2) | 2.992 (3) | 146 (3) |
N1—H1A···O14 | 0.94 (3) | 2.40 (3) | 2.985 (3) | 120 (3) |
N1—H1C···O16ii | 0.948 (10) | 1.96 (2) | 2.811 (3) | 148 (3) |
N1—H1C···O6v | 0.948 (10) | 2.36 (3) | 3.038 (3) | 128 (3) |
N1—H1D···O17 | 0.95 (3) | 2.17 (3) | 2.859 (3) | 129 (3) |
N1—H1D···O8v | 0.95 (3) | 2.47 (3) | 3.097 (3) | 124 (3) |
N1—H1D···O5 | 0.95 (3) | 2.60 (3) | 3.203 (3) | 122 (3) |
N2—H2A···O16 | 0.946 (10) | 2.001 (14) | 2.923 (3) | 164 (3) |
N2—H2B···O4 | 0.945 (10) | 1.927 (14) | 2.852 (3) | 165 (3) |
N2—H2C···O11vi | 0.946 (10) | 1.999 (15) | 2.912 (3) | 162 (3) |
N2—H2C···O7iii | 0.946 (10) | 2.65 (3) | 3.169 (3) | 115 (3) |
N2—H2D···O3vii | 0.94 (3) | 2.36 (3) | 3.089 (3) | 134 (3) |
N2—H2D···O14ii | 0.94 (3) | 2.29 (3) | 2.961 (3) | 128 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x+1, y, z; (v) −x+1, −y, −z+1; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y+1, z. |
Acknowledgements
The authors acknowledge funding from the Australian Research Council.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baerwald, C. (1885). Thesis, University of Berlin, Germany. Google Scholar
Bruker, (1995). SMART, SAINT and XPREP. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Q. & Zubieta, J. (1992). Coord. Chem. Rev. 114, 107-167. CrossRef CAS Web of Science Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Dickman, M. H. & Pope, M. T. (1994). Chem. Rev. 94, 569–584. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Feng, M.-L. & Mao, J.-G. (2004). Eur. J. Inorg. Chem. pp. 3712–3717. Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000). Editors. Xtal3.7 System. University of Western Australia, Perth, Australia. Google Scholar
Hill, C. L. (1998). Chem. Rev. 98, 1–387. Web of Science CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Larking, I. & Stomberg, R. (1970). Acta Chem. Scand. 24, 2043–2054. CrossRef CAS Web of Science Google Scholar
Larking, I. & Stomberg, R. (1972). Acta Chem. Scand. 26, 3708–3722. CrossRef CAS Web of Science Google Scholar
Long, D.-L., Kogerler, P., Farrugia, L. J. & Cronin, L. (2003). Angew. Chem. Int. Ed. 42, 4180-4183. Web of Science CSD CrossRef CAS Google Scholar
Michailovski, A. & Patzke, G. R. (2006). Chem. Eur. J. 12, 9122–9134. Web of Science CrossRef PubMed CAS Google Scholar
Molecular Structure Corporation (1998). TEXSAN for Windows. MSC, The Woodlands, Texas, USA. Google Scholar
Olson, S. & Stomberg, R. (1996). Z. Kristallogr. 211, 895–899. CrossRef CAS Google Scholar
Olson, S. & Stomberg, R. (1997a). Z. Kristallogr. 212, 699–703. CrossRef CAS Google Scholar
Olson, S. & Stomberg, R. (1997b). Z. Kristallogr. New Cryst. Struct. 212, 311–312. CAS Google Scholar
Persdotter, I., Trysberg, L. & Stomberg, R. (1986a). Acta Chem. Scand. Ser. A, 40, 335–343. CrossRef Web of Science Google Scholar
Persdotter, I., Trysberg, L. & Stomberg, R. (1986b). Acta Chem. Scand. Ser. A, 40, 83–90. CrossRef Web of Science Google Scholar
Persdotter, I., Trysberg, L. & Stomberg, R. (1986c). Acta Chem. Scand. Ser. A, 40, 1–7. CrossRef Web of Science Google Scholar
Pope, M. T. (1983). In Heteropoly and Isopoly Oxometallates. Berlin: Springer. Google Scholar
Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48. CrossRef Web of Science Google Scholar
Pope, M. T. & Müller, A. (2001). In Polyoxometalate Chemistry From Topology via Self Assembly to Applications. Berlin: Springer-Verlag. Google Scholar
Sergienko, V. S. C. R. (2008). Crystallogr. Rep. 53, 18–46. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct., 784, 244–248. Web of Science CSD CrossRef CAS Google Scholar
Stomberg, R. (1968). Acta. Chem. Scand. 22, 1076–1090. CrossRef CAS Web of Science Google Scholar
Stomberg, R. (1969). Acta. Chem. Scand. 23, 2755–2763. CrossRef CAS Web of Science Google Scholar
Stomberg, R. (1970). Acta. Chem. Scand. 24, 2024–2036. CrossRef CAS Web of Science Google Scholar
Stomberg, R. (1988a). J. Less-Common Met. 144, 109–116. CrossRef CAS Web of Science Google Scholar
Stomberg, R. (1988b). J. Crystallogr. Spectrosc. Res. 18, 659–669. CrossRef CAS Web of Science Google Scholar
Stomberg, R. (1992). J. Alloys Compd, 186, 271–278. CrossRef CAS Web of Science Google Scholar
Stomberg, R. (1995). J. Alloys Compd, 229, 227–232. CrossRef CAS Web of Science Google Scholar
Stomberg, R. & Olson, S. (1996). J. Alloys Compd, 237, 39–44. CrossRef CAS Web of Science Google Scholar
Stomberg, R. & Trysberg, L. (1969). Acta. Chem. Scand. 23, 314–317. CrossRef CAS Web of Science Google Scholar
Trysberg, L. & Stomberg, R. (1968). Acta Chem. Scand. 22, 2027–2028. CrossRef CAS Web of Science Google Scholar
Trysberg, L. & Stomberg, R. (1981). Acta Chem. Scand. Ser A, 35, 823–825. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polyoxometalates, which constitute an enormous class of metal-oxygen cluster compounds, have become very widely utilized inorganic components due to the extreme variability of their composition, molecular characteristics and properties - see Pope (1983), Pope & Muller (2001), Hill (1998).
The aqueous chemistry of molybdenum is dominated by the formation of polyoxoanions, the key structural motif being the MoO6 octahedron - see Pope & Muller (1991), Chen & Zubieta (1992). This motif is a versatile building block that gives rise to an exceptionally large family of polyoxomolybdates which range from 3 to 368 metal ions in a single molecule - see Michailovski & Patzke (2006). Baerwald (1885) probably reported the first peroxomolybdate, the species resulting from the dissolution of ammonium paramolybdate in excess H2O2, which was formulated as 14NH3.18MoO3.3H2O2.18H2O, .
The structure of the title complex consists of an octamolybdate unit possessing an inversion centre (Figure 1). In the complex there is a peroxide ligand coordinated to Mo1, one water molecule bound to Mo3, two triply coordinated oxygen atoms, O9, O13, and one quadruply coordinated oxygen atom, O15. The Mo—O bond lengths with the polyvalent O atoms range from 2.0125 (18) to 2.3338 (19) Å. The bridging Mo—O bonds range in length length from 1.8753 (19) to 1.9753 (19) Å. The bond lengths for the terminal Mo=O bonds range from 1.686 (2) to 1.722 (2) Å. These bonds lengths are in good agreement with previously published polyoxomolybdate structures - see Long et al. (2003), Feng & Mao (2004), Shi et al. (2006). However, there are two bond lengths that show significant deviation from the expected: the Mo1—O5 bond length of 2.2836 (19) Å is extremely long for a bridging Mo—O bond while the Mo4—O9 bond length of 1.86089 (19) Å is considerably shorter than expected for a bond involving a triply bridging oxygen.
The packing of the title complex (Figure 2) shows the individual units to be stacked in a cubic close packing arrangement with water and ammonium ions distributed in the channels formed. Hydrogen bonding interactions exist between ammonium ions and the molybdenum cluster: H2B with O4, H1B with O10. In addition there exist hydrogen bonding interactions between the ammonium ions and the O atoms of neighbouring clusters: H2C with 011, H2D with O3, H1A with O9, and H1B with O10. The water molecules also hydrogen bond with the ammonium ions: O16 with H2A, O16 with H1C, and O17 with H1D. There is H-bonding between the H atoms of the water molecules with oxygen atoms of the molybdenum cluster: the strongest being that between O1 and H17A while 07 and H16A has a slightly longer hydrogen bond length. There also exists hydrogen bonding with the protons of the coordinated water molecules (H12A) of one cluster with the O2 atom in a neighbouring cluster while the other proton (H12B) has a strong hydrogen bond to 017. The water molecules also exhibit weak interactions with neighbouring clusters whereby H16A and H16B interact with O3 and H17A and H17B interact with O10.