metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-[(7R,14R)-5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N](oxalato-κ2O,O′)nickel(II) oxalic acid solvate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: ouguangchuan@yahoo.com.cn

(Received 14 May 2009; accepted 26 May 2009; online 6 June 2009)

Both mol­ecules of the title compound, [Ni(C2O4)(C16H36N4)]·C2H2O4, are located on a crystallographic twofold rotation axis. The NiII atom shows a distorted octa­hedral geometry. The crystal packing is stabilized by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Tait & Busch (1976[Tait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4-7.]); Curtis (1965[Curtis, N. F. (1965). J. Chem. Soc. A, pp. 924-931.]). For a related crystal structure, see: Tang et al. (2002[Tang, J. K., Gao, E. Q., Zhang, L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Coord. Chem. 55, 527-535.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2O4)(C16H36N4)]·C2H2O4

  • Mr = 521.25

  • Orthorhombic, P 21 21 2

  • a = 10.1261 (15) Å

  • b = 15.515 (2) Å

  • c = 8.0467 (11) Å

  • V = 1264.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 173 K

  • 0.48 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.695, Tmax = 0.887

  • 5665 measured reflections

  • 2740 independent reflections

  • 2435 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.08

  • 2740 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1131 Friedel pairs

  • Flack parameter: 0.027 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O4i 0.93 2.17 3.075 (2) 164
N2—H2C⋯O2ii 0.93 2.13 2.987 (2) 152
O3—H3A⋯O2iii 0.84 1.70 2.532 (2) 170
Symmetry codes: (i) x, y-1, z; (ii) x, y, z+1; (iii) -x+2, -y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, many helical structures have been constructed through the coordination interactions of the organic ligand with suitable metal ions. Helical polymers constructed via hydrogen bonding, which is a versatile and efficient strategy, are still rare, and only a few cases have been reported. Then we employ chiral macrocyclic ligand L and oxalic acid as building blocks to construct helical structure, and unfortunately the helical structure is not obtained.

As illustrated in Fig.1, the six-coordinated Ni centre displays a distorted octahedral geometry. Neighbouring molecules are connected through intermolecular N-H···O and O-H···O hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Tait et al. (1976); Curtis (1965). For a related crystal structure, see: Tang et al. (2002).

Experimental top

Oxalic acid (0.5 g, 4 mmol) and NaOH (0.08 g, 2 mmol) were dissolved in 15 ml of water. To this solution was added [Ni(C16H36N4)](ClO4)2 (0.54 g, 1 mmol) dissolved in 2 ml of CH3CN. The solution was left to stand at room temperature and violet crystals formed after several weeks.

Refinement top

All H atoms were placed in calculated positions (O—H = 0.84Å, N—H = 0.93Å, C—H 0.98 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso (H) set to 1.2 Ueq(C,N) or 1.5 Ueq(Cmethyl,O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level; symmetry codes for the generated atoms: A(1 - x, 2 - y, z), B(2 - x, -y, z). H-atoms have been excluded for clarity.
[Figure 2] Fig. 2. The hydrogen bond pattern in the title compound.
cis-[(7R,14R)-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane-κ4N](oxalato- κ2O,O')nickel(II) oxalic acid solvate top
Crystal data top
[Ni(C2O4)(C16H36N4)]·C2H2O4F(000) = 556
Mr = 521.25Dx = 1.369 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 3630 reflections
a = 10.1261 (15) Åθ = 2.4–26.9°
b = 15.515 (2) ŵ = 0.82 mm1
c = 8.0467 (11) ÅT = 173 K
V = 1264.2 (3) Å3Prism, violet
Z = 20.48 × 0.21 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2740 independent reflections
Radiation source: fine-focus sealed tube2435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.695, Tmax = 0.887k = 198
5665 measured reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2740 reflectionsΔρmax = 0.40 e Å3
154 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1131 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.027 (13)
Crystal data top
[Ni(C2O4)(C16H36N4)]·C2H2O4V = 1264.2 (3) Å3
Mr = 521.25Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 10.1261 (15) ŵ = 0.82 mm1
b = 15.515 (2) ÅT = 173 K
c = 8.0467 (11) Å0.48 × 0.21 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2740 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2435 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.887Rint = 0.022
5665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.40 e Å3
S = 1.08Δρmin = 0.19 e Å3
2740 reflectionsAbsolute structure: Flack (1983), 1131 Friedel pairs
154 parametersAbsolute structure parameter: 0.027 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.60729 (3)0.02079 (9)
C100.57461 (18)1.00225 (19)0.2451 (2)0.0304 (4)
O11.09484 (13)0.05954 (8)0.40383 (17)0.0245 (3)
N10.81963 (17)0.07108 (10)0.6220 (2)0.0256 (4)
H1C0.77590.05970.52270.031*
C31.0605 (3)0.17864 (15)0.7602 (3)0.0338 (6)
H31.08870.19910.64780.041*
C50.9146 (3)0.19508 (15)0.7775 (3)0.0366 (6)
H5A0.90250.25770.79500.044*
H5B0.88460.16590.88010.044*
N21.09305 (18)0.08487 (10)0.7733 (2)0.0271 (4)
H2C1.07180.06720.88040.032*
O21.12362 (14)0.03860 (10)0.13153 (16)0.0360 (4)
O30.62920 (15)0.94107 (11)0.1583 (2)0.0423 (4)
H3A0.71170.94670.16090.064*
O40.63195 (17)1.05745 (11)0.3227 (2)0.0520 (5)
C21.2350 (2)0.06808 (14)0.7481 (3)0.0331 (5)
H2A1.28690.09640.83690.040*
H2B1.26360.09200.63990.040*
C91.0624 (2)0.02855 (12)0.2656 (2)0.0249 (4)
C10.7410 (2)0.02740 (14)0.7515 (3)0.0334 (5)
H1A0.64600.03900.73290.040*
H1B0.76520.05050.86200.040*
C60.8215 (2)0.16770 (13)0.6365 (2)0.0301 (5)
C41.1353 (3)0.23189 (14)0.8912 (3)0.0486 (7)
H4A1.11310.29300.87820.073*
H4B1.23060.22400.87640.073*
H4C1.10970.21261.00270.073*
C80.6827 (3)0.20270 (16)0.6697 (3)0.0452 (6)
H8A0.62090.17820.58880.068*
H8B0.68330.26560.65940.068*
H8C0.65510.18660.78230.068*
C70.8682 (2)0.20360 (14)0.4693 (3)0.0343 (5)
H7A0.95570.18030.44320.051*
H7B0.87310.26660.47560.051*
H7C0.80570.18690.38210.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02928 (17)0.02073 (15)0.01236 (14)0.00015 (18)0.0000.000
C100.0352 (10)0.0320 (10)0.0240 (9)0.0018 (13)0.0030 (8)0.0069 (14)
O10.0311 (7)0.0263 (7)0.0160 (7)0.0006 (6)0.0020 (6)0.0021 (6)
N10.0341 (9)0.0269 (8)0.0159 (8)0.0017 (7)0.0010 (8)0.0023 (7)
C30.0562 (15)0.0247 (11)0.0205 (11)0.0054 (11)0.0064 (11)0.0006 (9)
C50.0602 (18)0.0221 (11)0.0277 (13)0.0046 (11)0.0021 (12)0.0058 (10)
N20.0421 (11)0.0249 (9)0.0142 (8)0.0023 (8)0.0032 (7)0.0006 (7)
O20.0294 (8)0.0628 (10)0.0158 (7)0.0010 (7)0.0028 (6)0.0070 (7)
O30.0281 (8)0.0581 (11)0.0408 (9)0.0047 (8)0.0026 (7)0.0161 (8)
O40.0439 (10)0.0474 (10)0.0647 (12)0.0033 (8)0.0190 (9)0.0187 (9)
C20.0385 (13)0.0368 (13)0.0239 (11)0.0086 (11)0.0034 (10)0.0029 (10)
C90.0278 (10)0.0297 (10)0.0170 (9)0.0073 (8)0.0008 (8)0.0048 (8)
C10.0356 (12)0.0391 (13)0.0255 (11)0.0041 (10)0.0104 (10)0.0003 (9)
C60.0404 (13)0.0262 (10)0.0238 (11)0.0077 (9)0.0002 (10)0.0034 (9)
C40.0816 (19)0.0296 (11)0.0346 (13)0.0077 (12)0.0185 (15)0.0059 (12)
C80.0556 (16)0.0412 (13)0.0388 (13)0.0170 (12)0.0040 (12)0.0066 (11)
C70.0477 (14)0.0283 (11)0.0269 (11)0.0057 (10)0.0066 (11)0.0049 (9)
Geometric parameters (Å, º) top
Ni1—N22.0990 (17)N2—H2C0.9300
Ni1—N2i2.0990 (17)O2—C91.254 (2)
Ni1—O1i2.1110 (13)O3—H3A0.8400
Ni1—O12.1110 (13)C2—C1i1.501 (3)
Ni1—N12.1368 (16)C2—H2A0.9900
Ni1—N1i2.1368 (16)C2—H2B0.9900
C10—O41.209 (3)C9—C9i1.543 (4)
C10—O31.302 (3)C1—C2i1.501 (3)
C10—C10ii1.513 (4)C1—H1A0.9900
O1—C91.255 (2)C1—H1B0.9900
N1—C11.477 (3)C6—C81.530 (3)
N1—C61.504 (2)C6—C71.531 (3)
N1—H1C0.9300C4—H4A0.9800
C3—N21.495 (3)C4—H4B0.9800
C3—C51.506 (3)C4—H4C0.9800
C3—C41.539 (3)C8—H8A0.9800
C3—H31.0000C8—H8B0.9800
C5—C61.535 (3)C8—H8C0.9800
C5—H5A0.9900C7—H7A0.9800
C5—H5B0.9900C7—H7B0.9800
N2—C21.475 (3)C7—H7C0.9800
N2—Ni1—N2i100.97 (9)Ni1—N2—H2C107.5
N2—Ni1—O1i166.48 (6)C10—O3—H3A109.5
N2i—Ni1—O1i90.84 (6)N2—C2—C1i109.25 (19)
N2—Ni1—O190.84 (6)N2—C2—H2A109.8
N2i—Ni1—O1166.48 (6)C1i—C2—H2A109.8
O1i—Ni1—O178.29 (7)N2—C2—H2B109.8
N2—Ni1—N191.42 (7)C1i—C2—H2B109.8
N2i—Ni1—N184.55 (6)H2A—C2—H2B108.3
O1i—Ni1—N183.10 (6)O2—C9—O1125.80 (19)
O1—Ni1—N1101.88 (5)O2—C9—C9i118.43 (12)
N2—Ni1—N1i84.55 (6)O1—C9—C9i115.74 (11)
N2i—Ni1—N1i91.42 (7)N1—C1—C2i110.65 (19)
O1i—Ni1—N1i101.88 (5)N1—C1—H1A109.5
O1—Ni1—N1i83.10 (6)C2i—C1—H1A109.5
N1—Ni1—N1i173.67 (9)N1—C1—H1B109.5
O4—C10—O3126.15 (19)C2i—C1—H1B109.5
O4—C10—C10ii120.8 (3)H1A—C1—H1B108.1
O3—C10—C10ii113.0 (3)N1—C6—C8110.86 (18)
C9—O1—Ni1113.59 (12)N1—C6—C7107.34 (15)
C1—N1—C6114.16 (15)C8—C6—C7107.94 (18)
C1—N1—Ni1105.25 (12)N1—C6—C5109.95 (17)
C6—N1—Ni1120.54 (13)C8—C6—C5109.69 (18)
C1—N1—H1C105.2C7—C6—C5111.02 (19)
C6—N1—H1C105.2C3—C4—H4A109.5
Ni1—N1—H1C105.2C3—C4—H4B109.5
N2—C3—C5112.0 (2)H4A—C4—H4B109.5
N2—C3—C4111.46 (19)C3—C4—H4C109.5
C5—C3—C4109.2 (2)H4A—C4—H4C109.5
N2—C3—H3108.0H4B—C4—H4C109.5
C5—C3—H3108.0C6—C8—H8A109.5
C4—C3—H3108.0C6—C8—H8B109.5
C3—C5—C6119.2 (2)H8A—C8—H8B109.5
C3—C5—H5A107.5C6—C8—H8C109.5
C6—C5—H5A107.5H8A—C8—H8C109.5
C3—C5—H5B107.5H8B—C8—H8C109.5
C6—C5—H5B107.5C6—C7—H7A109.5
H5A—C5—H5B107.0C6—C7—H7B109.5
C2—N2—C3112.13 (17)H7A—C7—H7B109.5
C2—N2—Ni1103.84 (12)C6—C7—H7C109.5
C3—N2—Ni1117.82 (13)H7A—C7—H7C109.5
C2—N2—H2C107.5H7B—C7—H7C109.5
C3—N2—H2C107.5
N2—Ni1—O1—C9177.81 (13)O1—Ni1—N2—C260.63 (12)
N2i—Ni1—O1—C931.2 (3)N1—Ni1—N2—C2162.53 (13)
O1i—Ni1—O1—C95.92 (10)N1i—Ni1—N2—C222.36 (12)
N1—Ni1—O1—C986.19 (13)N2i—Ni1—N2—C3122.59 (18)
N1i—Ni1—O1—C997.78 (13)O1i—Ni1—N2—C327.8 (4)
N2—Ni1—N1—C194.43 (13)O1—Ni1—N2—C364.03 (16)
N2i—Ni1—N1—C16.46 (13)N1—Ni1—N2—C337.87 (16)
O1i—Ni1—N1—C197.97 (13)N1i—Ni1—N2—C3147.02 (16)
O1—Ni1—N1—C1174.42 (12)C3—N2—C2—C1i176.24 (19)
N1i—Ni1—N1—C144.13 (12)Ni1—N2—C2—C1i48.0 (2)
N2—Ni1—N1—C636.38 (14)Ni1—O1—C9—O2163.44 (16)
N2i—Ni1—N1—C6137.26 (14)Ni1—O1—C9—C9i14.9 (2)
O1i—Ni1—N1—C6131.22 (14)C6—N1—C1—C2i169.19 (19)
O1—Ni1—N1—C654.78 (14)Ni1—N1—C1—C2i34.8 (2)
N1i—Ni1—N1—C686.67 (13)C1—N1—C6—C845.1 (2)
N2—C3—C5—C670.9 (3)Ni1—N1—C6—C8171.97 (14)
C4—C3—C5—C6165.16 (19)C1—N1—C6—C7162.80 (18)
C5—C3—N2—C2177.2 (2)Ni1—N1—C6—C770.36 (19)
C4—C3—N2—C260.2 (2)C1—N1—C6—C576.3 (2)
C5—C3—N2—Ni156.7 (2)Ni1—N1—C6—C550.5 (2)
C4—C3—N2—Ni1179.33 (16)C3—C5—C6—N166.3 (3)
N2i—Ni1—N2—C2112.75 (13)C3—C5—C6—C8171.6 (2)
O1i—Ni1—N2—C296.8 (3)C3—C5—C6—C752.4 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4iii0.932.173.075 (2)164
N2—H2C···O2iv0.932.132.987 (2)152
O3—H3A···O2v0.841.702.532 (2)170
Symmetry codes: (iii) x, y1, z; (iv) x, y, z+1; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C2O4)(C16H36N4)]·C2H2O4
Mr521.25
Crystal system, space groupOrthorhombic, P21212
Temperature (K)173
a, b, c (Å)10.1261 (15), 15.515 (2), 8.0467 (11)
V3)1264.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.48 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.695, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
5665, 2740, 2435
Rint0.022
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.08
No. of reflections2740
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.19
Absolute structureFlack (1983), 1131 Friedel pairs
Absolute structure parameter0.027 (13)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.932.173.075 (2)163.6
N2—H2C···O2ii0.932.132.987 (2)151.9
O3—H3A···O2iii0.841.702.532 (2)170.4
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by the Foundation for University Key Teachers by the Education Department of Hunan Province and the Key Subject Construction Project of Hunan Province (No. 2006–180).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurtis, N. F. (1965). J. Chem. Soc. A, pp. 924–931.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4–7.  Google Scholar
First citationTang, J. K., Gao, E. Q., Zhang, L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Coord. Chem. 55, 527–535.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds