organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2,3,6,7-Tetra­hydro-1H,5H-benzo[ij]quinolizin-9-yl)methyl­ene]propane­di­nitrile

aDepartment of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
*Correspondence e-mail: maroncelli@psu.edu

(Received 20 May 2009; accepted 19 June 2009; online 27 June 2009)

The π system of the title compound, known as julolidinemalononitrile, C16H15N3, is nearly planar, with a 3.5 (1)° twist between the aromatic and dicyano­vinyl groups. The bond lengths indicate significant zwitterionic character in the ground state.

Related literature

For background to julolidinemalononitrile, see: Haidekker & Theodorakis (2007[Haidekker, M. A. & Theodorakis, E. A. (2007). Org. Biomol. Chem. 5, 1669-1678.]); Hooker & Torkelson (1995[Hooker, J. C. & Torkelson, J. M. (1995). Macromolecules, 28, 7683-7692.]); Loutfy & Arnold (1982[Loutfy, R. O. & Arnold, B. A. (1982). J. Phys. Chem. 86, 4205-4211.]); Marder et al. (1993[Marder, S. R., Perry, J. W., Bourhill, G., Gorman, C. B., Tiemann, B. G. & Mansour, K. (1993). Science, 261, 186-189.]); Mennucci et al. (2009[Mennucci, B., Cappelli, C., Guido, C. A., Cammi, R. & Tomasi, J. (2009). J. Phys. Chem. A, 113, 3009-3020.]); Paul & Samanta (2008[Paul, A. & Samanta, A. (2008). J. Phys. Chem. B, 112, 16626-16632.]); Swalina & Maroncelli (2009[Swalina, C. & Maroncelli, M. (2009). J. Chem. Phys. Submitted.]). For related benzyl­idene malononitrile structure data see Wang et al. (2001[Wang, K., Wang, Z.-M. & Yan, C.-H. (2001). Acta Cryst. E57, o214-o215.]); Anti­pin et al. (2003[Antipin, M. Y., Nesterov, V. N., Jiang, S., Borbulevych, O. Y., Sammeth, D. M., Sevostianova, E. V. & Timofeeva, T. V. (2003). J. Mol. Struct. 650, 1-20.]); van Bolhuis & Kiers (1978[Bolhuis, F. van & Kiers, C. T. (1978). Acta Cryst. B34, 1015-1016.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3

  • Mr = 249.31

  • Monoclinic, P 21 /n

  • a = 4.9587 (9) Å

  • b = 15.614 (3) Å

  • c = 16.699 (3) Å

  • β = 91.609 (3)°

  • V = 1292.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 110 K

  • 0.28 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.989

  • 7359 measured reflections

  • 3158 independent reflections

  • 2323 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.169

  • S = 1.06

  • 3158 reflections

  • 172 parameters

  • H-atom parameters not refined

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Julolidinemalononitrile, or JDMN for short (Fig. 1), has been extensively study for two distinct purposes. As a classic "push-pull" molecule with large hyperpolarizability, it has been used as a model system for understanding nonlinear optical properties of molecules (Mennucci et al., 2009). In a completely different context, the environmental sensitivity of the emission yield of JDMN has also made it a popular probe for local fluidity in conventional solvents (Loutfy & Arnold, 1982), polymers (Hooker & Torkelson, 1995), ionic liquids (Paul & Samanta, 2008) and biological media (Haidekker & Theodorakis, 2007). In an effort to understand this environmental sensitivity, we have undertaken electronic structure calculations of JDMN and related molecules (Swalina & Maroncelli, 2009). To partially test the accuracy of these calculations we obtained crystal structure data on JDMN, which are reported here.

The crystal packing of JDMN consists of interleaved columns of slipped π-stacked molecules (Fig. 2). The molecular structure contains planar dicyanovinyl and aminobenzene portions, which are nearly coplanar with one another. The 3.0 (4)° torsion angle (C12—C11—C13—C14), as well as the wide C11—C13—C14 angle (131.6 (2)°; θ in Table 1), results from the unfavorable overlap between the hydrogen atom on C12 and N3 (2.724 (2) Å). The julolidine ring system of JDMN adopts a syn ("W") conformation in which the amino nitrogen atom is nearly sp2 hybridized (average CNC = 119.6 (2)°).

It is useful to view the ground and first excited state of JDMN as consisting of mixtures of the neutral and zwitterionic forms depicted in Scheme 2. Table 1 lists some structural parameters of JDMN useful in this context, together with data for several related molecules (see table 1). Ar1 and Ar2 are the average aromatic bond lengths that form the single (1) and double (2) bonds in the zwitterionic state; ΔAr is the difference between these bond lengths. As shown by the data in Table 1, JDMN and the closely related dimethylamino compound (DMN, R = N(CH3)2) exhibit non-negligible quinoidal character (Wang et al., 2001), whereas the unsubstituted (R = H) and halogen-substituted analogues (Antipin et al., 2003), represented here by R = F, do not. (For reference ΔAr = 0.14 Å in p-benzoquinone (van Bolhuis & Kiers, 1978)). Table 1 also lists bond lengths in the vinyl portion of the molecule, as well as Δpm the bond-length alternation in the polymethine chain. Δpm is small in both JDMN and DMN compared to the ideal polymethine value of 0.11 Å.(Marder et al., 1993) In contrast, the values of Δpm in the H– and F-substituted analogues are much closer to the ideal. Both the difference in aromatic bond and vinyl bond lengths indicate substantial zwitterionic character in the ground state of the push-pull molecule JDMN (as well as in DMN).

Related literature top

For background to julolidinemalononitrile, see: Haidekker & Theodorakis (2007); Hooker & Torkelson (1995); Loutfy & Arnold (1982); Marder et al. (1993); Mennucci et al. (2009); Paul & Samanta (2008); Swalina & Maroncelli (2009). For related benzylidene malononitrile structure data see Wang et al. (2001); Antipin et al. (2003); van Bolhuis & Kiers (1978).

Experimental top

JDMN was dissolved in a 1:1 (v/v) mixture of CH2Cl2 and ethanol. Orange block-shaped crystals of JDMN were grown by evaporating solvents slowly at room temperature.

Refinement top

H atom were positioned geometrically (Caromatic—H = 0.93 Å, Cmethylene—H = 0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(Caromatic).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids at the 50 % probability level.
[Figure 2] Fig. 2. : Crystal packing of the title compound.
[Figure 3] Fig. 3. The formation of the title compound.
[Figure 4] Fig. 4. The molecular structure and the meaning of R relevant for Table 1.
2-[(2,3,6,7-Tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)methylene]propanedinitrile top
Crystal data top
C16H15N3F(000) = 528
Mr = 249.31Dx = 1.281 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.9587 (9) ÅCell parameters from 1409 reflections
b = 15.614 (3) Åθ = 2.8–26.9°
c = 16.699 (3) ŵ = 0.08 mm1
β = 91.609 (3)°T = 110 K
V = 1292.4 (4) Å3Block, orange
Z = 40.28 × 0.15 × 0.14 mm
Data collection top
Bruker SMAT CCD area-detector
diffractometer
3158 independent reflections
Radiation source: fine-focus sealed tube2323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 66
Tmin = 0.979, Tmax = 0.989k = 1720
7359 measured reflectionsl = 1322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters not refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.5857P]
where P = (Fo2 + 2Fc2)/3
3158 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H15N3V = 1292.4 (4) Å3
Mr = 249.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9587 (9) ŵ = 0.08 mm1
b = 15.614 (3) ÅT = 110 K
c = 16.699 (3) Å0.28 × 0.15 × 0.14 mm
β = 91.609 (3)°
Data collection top
Bruker SMAT CCD area-detector
diffractometer
3158 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2323 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.989Rint = 0.045
7359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.169H-atom parameters not refined
S = 1.06Δρmax = 0.47 e Å3
3158 reflectionsΔρmin = 0.28 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2573 (4)0.10806 (16)0.50258 (14)0.0280 (5)
H1A0.08510.13750.49990.034*
H1B0.22210.04690.50240.034*
C20.4171 (5)0.13118 (15)0.43008 (14)0.0283 (5)
H2A0.31230.11820.38170.034*
H2B0.58170.09770.42970.034*
C30.4856 (4)0.22589 (15)0.43229 (13)0.0254 (5)
H3A0.60080.23980.38810.030*
H3B0.32150.25940.42640.030*
C40.6279 (4)0.24797 (14)0.51057 (12)0.0193 (5)
C50.5717 (4)0.20016 (13)0.58073 (13)0.0188 (4)
C60.6987 (4)0.22407 (14)0.65502 (12)0.0197 (5)
C70.6322 (5)0.17692 (15)0.73081 (14)0.0278 (5)
H7A0.49360.20800.75860.033*
H7B0.79160.17440.76580.033*
C80.5344 (5)0.08689 (16)0.71287 (15)0.0318 (6)
H8A0.68330.05230.69470.038*
H8B0.46730.06110.76120.038*
C90.3142 (4)0.08886 (15)0.64948 (14)0.0266 (5)
H9A0.25930.03070.63670.032*
H9B0.15920.11880.66990.032*
C100.8160 (4)0.31257 (14)0.51565 (12)0.0191 (4)
H100.85340.34300.46940.023*
C110.9550 (4)0.33494 (14)0.58745 (12)0.0186 (4)
C120.8864 (4)0.28912 (14)0.65663 (12)0.0200 (5)
H120.97100.30330.70520.024*
C131.1540 (4)0.40053 (14)0.58368 (12)0.0204 (5)
H131.16670.42590.53350.024*
C141.3297 (4)0.43292 (14)0.64049 (12)0.0194 (4)
C151.5117 (4)0.50020 (14)0.62010 (13)0.0221 (5)
C161.3544 (4)0.40483 (14)0.72205 (13)0.0198 (4)
N10.4020 (3)0.13133 (12)0.57683 (11)0.0233 (4)
N21.6579 (4)0.55454 (13)0.60473 (11)0.0301 (5)
N31.3789 (4)0.38375 (13)0.78791 (12)0.0290 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (11)0.0236 (13)0.0364 (13)0.0022 (9)0.0050 (9)0.0035 (10)
C20.0272 (11)0.0275 (13)0.0299 (12)0.0010 (10)0.0054 (9)0.0076 (10)
C30.0272 (11)0.0261 (13)0.0226 (11)0.0027 (9)0.0032 (9)0.0011 (9)
C40.0194 (10)0.0182 (11)0.0204 (10)0.0055 (8)0.0009 (8)0.0025 (8)
C50.0158 (9)0.0156 (11)0.0252 (11)0.0029 (8)0.0047 (8)0.0021 (8)
C60.0209 (10)0.0160 (11)0.0225 (11)0.0036 (8)0.0047 (8)0.0005 (8)
C70.0338 (12)0.0249 (13)0.0251 (12)0.0042 (10)0.0063 (9)0.0022 (10)
C80.0331 (13)0.0279 (14)0.0347 (13)0.0044 (10)0.0043 (10)0.0080 (11)
C90.0240 (11)0.0187 (12)0.0375 (13)0.0016 (9)0.0061 (9)0.0017 (10)
C100.0209 (10)0.0188 (11)0.0177 (10)0.0026 (8)0.0025 (8)0.0019 (8)
C110.0191 (10)0.0160 (11)0.0209 (10)0.0029 (8)0.0039 (8)0.0001 (8)
C120.0229 (10)0.0199 (12)0.0174 (10)0.0026 (8)0.0014 (8)0.0007 (8)
C130.0228 (10)0.0197 (12)0.0189 (10)0.0020 (8)0.0043 (8)0.0027 (9)
C140.0203 (10)0.0161 (11)0.0220 (10)0.0009 (8)0.0059 (8)0.0008 (9)
C150.0266 (11)0.0212 (12)0.0183 (10)0.0009 (9)0.0003 (8)0.0002 (9)
C160.0189 (10)0.0184 (11)0.0221 (11)0.0001 (8)0.0025 (8)0.0023 (9)
N10.0210 (9)0.0204 (10)0.0284 (10)0.0037 (7)0.0001 (7)0.0008 (8)
N20.0379 (11)0.0271 (12)0.0252 (10)0.0081 (9)0.0004 (8)0.0005 (9)
N30.0302 (10)0.0312 (12)0.0257 (11)0.0018 (8)0.0009 (8)0.0005 (9)
Geometric parameters (Å, º) top
C1—N11.461 (3)C7—H7B0.9700
C1—C21.509 (3)C8—C91.500 (3)
C1—H1A0.9700C8—H8A0.9700
C1—H1B0.9700C8—H8B0.9700
C2—C31.518 (3)C9—N11.460 (3)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—C41.508 (3)C10—C111.410 (3)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—C121.409 (3)
C4—C101.375 (3)C11—C131.425 (3)
C4—C51.423 (3)C12—H120.9300
C5—N11.365 (3)C13—C141.367 (3)
C5—C61.425 (3)C13—H130.9300
C6—C121.377 (3)C14—C151.432 (3)
C6—C71.509 (3)C14—C161.433 (3)
C7—C81.514 (3)C15—N21.150 (3)
C7—H7A0.9700C16—N31.151 (3)
N1—C1—C2111.41 (18)C9—C8—C7110.1 (2)
N1—C1—H1A109.3C9—C8—H8A109.6
C2—C1—H1A109.3C7—C8—H8A109.6
N1—C1—H1B109.3C9—C8—H8B109.6
C2—C1—H1B109.3C7—C8—H8B109.6
H1A—C1—H1B108.0H8A—C8—H8B108.2
C1—C2—C3109.62 (19)N1—C9—C8111.58 (18)
C1—C2—H2A109.7N1—C9—H9A109.3
C3—C2—H2A109.7C8—C9—H9A109.3
C1—C2—H2B109.7N1—C9—H9B109.3
C3—C2—H2B109.7C8—C9—H9B109.3
H2A—C2—H2B108.2H9A—C9—H9B108.0
C4—C3—C2110.05 (18)C4—C10—C11123.28 (19)
C4—C3—H3A109.7C4—C10—H10118.4
C2—C3—H3A109.7C11—C10—H10118.4
C4—C3—H3B109.7C12—C11—C10116.62 (19)
C2—C3—H3B109.7C12—C11—C13125.78 (19)
H3A—C3—H3B108.2C10—C11—C13117.59 (19)
C10—C4—C5118.83 (19)C6—C12—C11122.5 (2)
C10—C4—C3121.43 (19)C6—C12—H12118.8
C5—C4—C3119.73 (19)C11—C12—H12118.8
N1—C5—C4120.55 (19)C14—C13—C11131.6 (2)
N1—C5—C6120.29 (19)C14—C13—H13114.2
C4—C5—C6119.15 (19)C11—C13—H13114.2
C12—C6—C5119.47 (19)C13—C14—C15120.00 (19)
C12—C6—C7120.5 (2)C13—C14—C16125.6 (2)
C5—C6—C7120.06 (19)C15—C14—C16114.40 (18)
C6—C7—C8111.31 (19)N2—C15—C14179.1 (2)
C6—C7—H7A109.4N3—C16—C14178.3 (2)
C8—C7—H7A109.4C5—N1—C9121.04 (19)
C6—C7—H7B109.4C5—N1—C1121.57 (19)
C8—C7—H7B109.4C9—N1—C1116.21 (18)
H7A—C7—H7B108.0
N1—C1—C2—C356.0 (2)C5—C6—C12—C111.4 (3)
C1—C2—C3—C454.6 (2)C7—C6—C12—C11180.00 (19)
C2—C3—C4—C10149.2 (2)C10—C11—C12—C61.6 (3)
C2—C3—C4—C529.5 (3)C13—C11—C12—C6177.4 (2)
C10—C4—C5—N1174.91 (18)C12—C11—C13—C143.0 (4)
C3—C4—C5—N13.9 (3)C10—C11—C13—C14176.0 (2)
C10—C4—C5—C64.0 (3)C11—C13—C14—C15179.9 (2)
C3—C4—C5—C6177.27 (18)C11—C13—C14—C160.7 (4)
N1—C5—C6—C12174.60 (18)C13—C14—C15—N2154 (17)
C4—C5—C6—C124.3 (3)C16—C14—C15—N226 (17)
N1—C5—C6—C74.0 (3)C13—C14—C16—N3179 (100)
C4—C5—C6—C7177.16 (18)C15—C14—C16—N32 (9)
C12—C6—C7—C8153.2 (2)C4—C5—N1—C9171.71 (18)
C5—C6—C7—C825.4 (3)C6—C5—N1—C99.4 (3)
C6—C7—C8—C950.6 (3)C4—C5—N1—C14.6 (3)
C7—C8—C9—N156.3 (3)C6—C5—N1—C1176.57 (19)
C5—C4—C10—C110.8 (3)C8—C9—N1—C536.2 (3)
C3—C4—C10—C11179.57 (19)C8—C9—N1—C1156.0 (2)
C4—C10—C11—C122.0 (3)C2—C1—N1—C531.3 (3)
C4—C10—C11—C13177.13 (19)C2—C1—N1—C9160.98 (19)

Experimental details

Crystal data
Chemical formulaC16H15N3
Mr249.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)4.9587 (9), 15.614 (3), 16.699 (3)
β (°) 91.609 (3)
V3)1292.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.15 × 0.14
Data collection
DiffractometerBruker SMAT CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.979, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7359, 3158, 2323
Rint0.045
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.169, 1.06
No. of reflections3158
No. of parameters172
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.47, 0.28

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Table 1. Selected parameters (Å, °) and comparison to related molecules top
MoleculeR—C5Ar1Ar2ΔArC11—C13C13—C14C—CNΔpmCNθτ
JDMNa1.3651.4171.3760.041.4251.3671.4330.061.1511323
N(CH3)2b1.3591.4101.3660.041.4231.3671.4310.061.1421327
Hc1.3871.3790.011.4501.3501.4400.091.14513110
Fc1.3561.3771.3800.001.4541.3411.4370.101.1331325
Notes: Ar1 = average {C10—C11, C11—C12, C4—C5, C5—C6}; Ar2 = average {C4—C10, C6—C12}; Δ = Ar1–Ar2 C—CN = average{C14—C15, C14—C16}; Δpm = average{C11—C13, C14—C15, C14—C16} - (C13—C14); θ = the C11—C13—C14 angle; τ = the C12—C11—C13—C14 torsion angle. Notes: (a) This work; (b) Wang et al. (2001); (c) Antipin et al. (2003).
 

Acknowledgements

This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Science, US Department of Energy at PSU by grant No. DE—FG02–89ER14020. We also acknowledge NSF funding (CHEM-0131112) for the X-ray equipment.

References

First citationAntipin, M. Y., Nesterov, V. N., Jiang, S., Borbulevych, O. Y., Sammeth, D. M., Sevostianova, E. V. & Timofeeva, T. V. (2003). J. Mol. Struct. 650, 1–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolhuis, F. van & Kiers, C. T. (1978). Acta Cryst. B34, 1015–1016.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaidekker, M. A. & Theodorakis, E. A. (2007). Org. Biomol. Chem. 5, 1669–1678.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooker, J. C. & Torkelson, J. M. (1995). Macromolecules, 28, 7683–7692.  CrossRef CAS Web of Science Google Scholar
First citationLoutfy, R. O. & Arnold, B. A. (1982). J. Phys. Chem. 86, 4205–4211.  CrossRef CAS Web of Science Google Scholar
First citationMarder, S. R., Perry, J. W., Bourhill, G., Gorman, C. B., Tiemann, B. G. & Mansour, K. (1993). Science, 261, 186–189.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMennucci, B., Cappelli, C., Guido, C. A., Cammi, R. & Tomasi, J. (2009). J. Phys. Chem. A, 113, 3009–3020.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, A. & Samanta, A. (2008). J. Phys. Chem. B, 112, 16626–16632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwalina, C. & Maroncelli, M. (2009). J. Chem. Phys. Submitted.  Google Scholar
First citationWang, K., Wang, Z.-M. & Yan, C.-H. (2001). Acta Cryst. E57, o214–o215.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds