metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Dimeth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}nickel(II)

aDepartment of Chemistry, Yasouj University, Yasouj 75914-353, Iran, bCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and cDepartment of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan
*Correspondence e-mail: mhhabibi@yahoo.com

(Received 24 May 2009; accepted 26 May 2009; online 6 June 2009)

In the title complex, [Ni(C21H24N2O4)], the NiII ion has a slightly distorted square-planar geometry, coordinated by the two N and two O atoms of a new tetra­dentate Schiff base ligand. The dihedral angle between the planes of the two NiNC3O chelate rings is 14.37 (12)°.

Related literature

For the structures of free Schiff bases, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). Nickel(II) complexes with N2O2 Schiff-base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden et al., 1981[Gosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfacial Electrochem. 117, 101-107.]; Healy & Pletcher, 1978[Healy, K. P. & Pletcher, D. (1978). J. Organomet. Chem. 161, 109-120.]). For related structures, see: Habibi et al. (2007a[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007a). Acta Cryst. E63, m1998.],b[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007b). Acta Cryst. E63, m2304.]). For Ni—O and Ni—N distances, see: Akhtar (1981[Akhtar, F. (1981). Acta Cryst. B37, 84-88.]); Shkolnikova et al. (1970[Shkolnikova, L. M., Yumal, E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. 11, 886-890.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C21H24N2O4)]

  • Mr = 427.13

  • Orthorhombic, P b c a

  • a = 15.6110 (7) Å

  • b = 9.1151 (5) Å

  • c = 26.8142 (12) Å

  • V = 3815.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 193 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.744, Tmax = 0.818

  • 35644 measured reflections

  • 4362 independent reflections

  • 3946 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.05

  • 4362 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases and their biologically active complexes have been studied extensively over the past decade. Although numerous transition metal complexes of Schiff bases have been structurally characterized, relatively few free Schiff bases have been similarly characterized (Garnovskii et al., 1993).

Nickel(II) complexes with N2O2 Schiff-base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden et al., 1981; Healy & Pletcher, 1978).

Recently we reported the structure of a copper(II) and nickel(II) complexes with the N,N'-bis(6-methoxysalicylidene)-1,3-diaminopropane ligand (Habibi et al., 2007a,b). The title compound is isostructural with its CuII and NiII analogues.

In the title compound (Figure 1), the Ni—O and Ni—N distances are larger than the comparable mean distances of 1.829 and 1.859 Å (Table 1), respectively, in N,N'-ethylenebis(salicylideneiminato)nickel(II) (Shkolnikova et al., 1970) and 1.849 (2) and 1.840 (2) Å, respectively, in N,N'-ethylenebis[(2-hydroxy-1-naphthyl)methaniminato]nickel(II) (Akhtar, 1981).

Related literature top

For the structures of free Schiff bases, see: Garnovskii et al. (1993). Nickel(II) complexes with N2O2 Schiff-base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden et al., 1981; Healy & Pletcher, 1978). For related structures, see: Habibi et al. (2007a,b). For Ni—O and Ni—N distances, see: Akhtar (1981); Shkolnikova et al. (1970).

Experimental top

A mixture of 6-methoxysalicylaldehyde (2.0 mmol, 304 mg) and 2,2-dimethylpropane-1,3-diamine (1.0 mmol, 102 mg) was dissolved in methanol (10 ml) with stirring for 15 min at room temperature, to give a clear yellow solution. A methanol solution (10 ml) of Ni(OAc)2.4H2O (1.0 mmol, 249 mg) was then added. The mixture was refluxed for a further 45 min and then filtered. After keeping the filtrate in air for 5 d, dark green block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent, in about 85% yield.

Refinement top

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
{4,4'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenolato}nickel(II) top
Crystal data top
[Ni(C21H24N2O4)]Dx = 1.487 Mg m3
Mr = 427.13Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 27241 reflections
a = 15.6110 (7) Åθ = 3.0–27.5°
b = 9.1151 (5) ŵ = 1.05 mm1
c = 26.8142 (12) ÅT = 193 K
V = 3815.5 (3) Å3Block, dark-green
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 1792
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube3946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.744, Tmax = 0.818l = 3432
35644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0413P)2 + 1.3733P]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Ni(C21H24N2O4)]V = 3815.5 (3) Å3
Mr = 427.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.6110 (7) ŵ = 1.05 mm1
b = 9.1151 (5) ÅT = 193 K
c = 26.8142 (12) Å0.30 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3946 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.818Rint = 0.020
35644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
4362 reflectionsΔρmin = 0.18 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.951753 (10)0.180679 (18)0.014687 (6)0.02025 (7)
O10.85263 (6)0.10007 (11)0.04139 (3)0.0281 (2)
O20.91005 (6)0.10714 (11)0.04479 (3)0.0271 (2)
O30.75989 (7)0.00704 (12)0.23785 (4)0.0353 (2)
O41.01038 (8)0.20756 (14)0.23918 (4)0.0398 (3)
N10.97892 (7)0.27883 (12)0.07416 (4)0.0215 (2)
N21.05801 (7)0.23220 (13)0.01347 (4)0.0209 (2)
C10.83516 (8)0.08183 (15)0.08876 (5)0.0234 (3)
C20.76375 (9)0.00620 (16)0.10235 (5)0.0287 (3)
H20.73040.05120.07700.034*
C30.74193 (9)0.02755 (16)0.15133 (5)0.0304 (3)
H30.69400.08740.15920.036*
C40.78912 (9)0.03727 (15)0.19010 (5)0.0273 (3)
C50.85834 (8)0.12301 (15)0.17879 (5)0.0252 (3)
H50.89080.16690.20480.030*
C60.88167 (8)0.14645 (14)0.12825 (5)0.0227 (3)
C70.94728 (8)0.25124 (15)0.11773 (5)0.0229 (3)
H70.96960.30530.14510.028*
C80.79861 (12)0.0897 (2)0.27678 (6)0.0436 (4)
H8A0.76920.06930.30830.052*
H8B0.79420.19460.26910.052*
H8C0.85910.06230.27970.052*
C91.03568 (8)0.40646 (14)0.06956 (5)0.0231 (3)
H9A1.03360.46350.10090.028*
H9B1.01440.47040.04240.028*
C101.12843 (8)0.36428 (15)0.05867 (5)0.0238 (3)
C110.93847 (8)0.13593 (15)0.08973 (5)0.0232 (3)
C120.88895 (9)0.08927 (15)0.13120 (5)0.0272 (3)
H120.83680.03820.12550.033*
C130.91455 (9)0.11618 (16)0.17925 (5)0.0290 (3)
H130.87940.08520.20620.035*
C140.99180 (10)0.18878 (15)0.18915 (5)0.0289 (3)
C151.04265 (9)0.23295 (16)0.15007 (5)0.0272 (3)
H151.09560.28070.15650.033*
C161.01630 (9)0.20742 (14)0.10023 (5)0.0228 (3)
C171.07511 (8)0.23987 (14)0.06053 (5)0.0226 (2)
H171.13130.26950.06970.027*
C181.08696 (13)0.2857 (2)0.24969 (6)0.0474 (4)
H18A1.09400.29500.28590.057*
H18B1.13600.23250.23570.057*
H18C1.08380.38360.23470.057*
C191.13172 (8)0.23648 (15)0.02101 (5)0.0230 (3)
H19A1.18510.24460.00120.028*
H19B1.13410.14280.03960.028*
C201.17187 (10)0.31209 (18)0.10659 (6)0.0349 (3)
H20A1.22950.27610.09880.042*
H20B1.13810.23280.12150.042*
H20C1.17590.39400.13020.042*
C211.17386 (10)0.49902 (17)0.03763 (6)0.0364 (3)
H21A1.23480.47690.03290.044*
H21B1.16780.58110.06100.044*
H21C1.14820.52560.00550.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01948 (10)0.02097 (10)0.02030 (10)0.00186 (6)0.00049 (6)0.00188 (6)
O10.0253 (5)0.0358 (5)0.0231 (4)0.0077 (4)0.0010 (4)0.0026 (4)
O20.0279 (5)0.0305 (5)0.0229 (4)0.0065 (4)0.0015 (4)0.0025 (4)
O30.0381 (6)0.0421 (6)0.0258 (5)0.0117 (5)0.0024 (5)0.0073 (4)
O40.0459 (7)0.0524 (7)0.0211 (5)0.0077 (5)0.0003 (5)0.0034 (4)
N10.0194 (5)0.0200 (5)0.0250 (5)0.0007 (4)0.0011 (4)0.0019 (4)
N20.0207 (5)0.0189 (5)0.0230 (5)0.0012 (4)0.0007 (4)0.0017 (4)
C10.0212 (6)0.0239 (6)0.0253 (6)0.0006 (5)0.0014 (5)0.0005 (5)
C20.0258 (7)0.0303 (7)0.0302 (7)0.0059 (5)0.0019 (6)0.0016 (5)
C30.0267 (7)0.0312 (7)0.0332 (7)0.0076 (5)0.0014 (6)0.0037 (6)
C40.0290 (7)0.0281 (7)0.0248 (6)0.0009 (5)0.0019 (5)0.0047 (5)
C50.0245 (6)0.0275 (7)0.0236 (6)0.0004 (5)0.0014 (5)0.0009 (5)
C60.0209 (6)0.0223 (6)0.0248 (6)0.0005 (5)0.0010 (5)0.0006 (5)
C70.0217 (6)0.0235 (7)0.0236 (6)0.0005 (5)0.0012 (5)0.0031 (5)
C80.0474 (9)0.0601 (11)0.0234 (7)0.0133 (8)0.0003 (7)0.0057 (7)
C90.0246 (6)0.0191 (6)0.0255 (6)0.0018 (5)0.0024 (5)0.0028 (5)
C100.0213 (6)0.0239 (6)0.0262 (6)0.0031 (5)0.0005 (5)0.0032 (5)
C110.0256 (6)0.0198 (6)0.0242 (6)0.0024 (5)0.0003 (5)0.0024 (5)
C120.0257 (6)0.0267 (7)0.0292 (7)0.0003 (5)0.0016 (5)0.0041 (5)
C130.0321 (7)0.0295 (7)0.0254 (6)0.0030 (6)0.0053 (6)0.0042 (5)
C140.0356 (8)0.0293 (7)0.0219 (6)0.0026 (6)0.0003 (6)0.0011 (5)
C150.0291 (7)0.0263 (7)0.0262 (7)0.0006 (5)0.0019 (5)0.0007 (5)
C160.0256 (6)0.0200 (6)0.0230 (6)0.0016 (5)0.0004 (5)0.0018 (5)
C170.0226 (6)0.0196 (6)0.0257 (6)0.0004 (5)0.0019 (5)0.0018 (5)
C180.0581 (11)0.0578 (11)0.0264 (7)0.0113 (9)0.0073 (8)0.0074 (7)
C190.0190 (6)0.0244 (6)0.0256 (6)0.0011 (5)0.0022 (5)0.0024 (5)
C200.0314 (7)0.0428 (9)0.0304 (7)0.0021 (6)0.0072 (6)0.0077 (6)
C210.0331 (8)0.0281 (7)0.0480 (9)0.0089 (6)0.0117 (7)0.0044 (6)
Geometric parameters (Å, º) top
Ni1—O21.8483 (9)C9—C101.5264 (17)
Ni1—O11.8566 (9)C9—H9A0.9900
Ni1—N11.8770 (11)C9—H9B0.9900
Ni1—N21.8821 (11)C10—C211.5263 (19)
O1—C11.3098 (16)C10—C201.529 (2)
O2—C111.3107 (16)C10—C191.5425 (18)
O3—C41.3869 (16)C11—C161.4072 (18)
O3—C81.4222 (19)C11—C121.4196 (19)
O4—C141.3833 (17)C12—C131.3710 (19)
O4—C181.420 (2)C12—H120.9500
N1—C71.2932 (17)C13—C141.401 (2)
N1—C91.4676 (16)C13—H130.9500
N2—C171.2917 (17)C14—C151.375 (2)
N2—C191.4765 (16)C15—C161.4174 (19)
C1—C61.4124 (18)C15—H150.9500
C1—C21.4211 (18)C16—C171.4368 (18)
C2—C31.371 (2)C17—H170.9500
C2—H20.9500C18—H18A0.9800
C3—C41.404 (2)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
C4—C51.3678 (19)C19—H19A0.9900
C5—C61.4195 (18)C19—H19B0.9900
C5—H50.9500C20—H20A0.9800
C6—C71.4286 (18)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C8—H8A0.9800C21—H21A0.9800
C8—H8B0.9800C21—H21B0.9800
C8—H8C0.9800C21—H21C0.9800
O2—Ni1—O184.02 (4)C21—C10—C20110.79 (12)
O2—Ni1—N1170.21 (5)C9—C10—C20109.78 (11)
O1—Ni1—N192.82 (4)C21—C10—C19110.51 (11)
O2—Ni1—N293.14 (4)C9—C10—C19110.31 (10)
O1—Ni1—N2171.13 (5)C20—C10—C19107.48 (11)
N1—Ni1—N291.30 (5)O2—C11—C16124.67 (12)
C1—O1—Ni1126.72 (8)O2—C11—C12118.43 (12)
C11—O2—Ni1126.98 (9)C16—C11—C12116.88 (12)
C4—O3—C8115.62 (11)C13—C12—C11121.59 (13)
C14—O4—C18115.53 (12)C13—C12—H12119.2
C7—N1—C9117.43 (11)C11—C12—H12119.2
C7—N1—Ni1126.06 (9)C12—C13—C14120.89 (13)
C9—N1—Ni1116.29 (8)C12—C13—H13119.6
C17—N2—C19116.69 (11)C14—C13—H13119.6
C17—N2—Ni1125.98 (9)C15—C14—O4125.58 (14)
C19—N2—Ni1116.25 (8)C15—C14—C13119.40 (13)
O1—C1—C6124.53 (12)O4—C14—C13115.01 (13)
O1—C1—C2118.93 (12)C14—C15—C16120.19 (13)
C6—C1—C2116.53 (12)C14—C15—H15119.9
C3—C2—C1121.38 (13)C16—C15—H15119.9
C3—C2—H2119.3C11—C16—C15121.02 (12)
C1—C2—H2119.3C11—C16—C17119.92 (12)
C2—C3—C4121.28 (13)C15—C16—C17118.64 (12)
C2—C3—H3119.4N2—C17—C16125.50 (12)
C4—C3—H3119.4N2—C17—H17117.2
C5—C4—O3125.32 (13)C16—C17—H17117.2
C5—C4—C3119.38 (13)O4—C18—H18A109.5
O3—C4—C3115.30 (12)O4—C18—H18B109.5
C4—C5—C6120.03 (12)H18A—C18—H18B109.5
C4—C5—H5120.0O4—C18—H18C109.5
C6—C5—H5120.0H18A—C18—H18C109.5
C1—C6—C5121.40 (12)H18B—C18—H18C109.5
C1—C6—C7119.97 (12)N2—C19—C10113.82 (11)
C5—C6—C7118.23 (12)N2—C19—H19A108.8
N1—C7—C6125.60 (12)C10—C19—H19A108.8
N1—C7—H7117.2N2—C19—H19B108.8
C6—C7—H7117.2C10—C19—H19B108.8
O3—C8—H8A109.5H19A—C19—H19B107.7
O3—C8—H8B109.5C10—C20—H20A109.5
H8A—C8—H8B109.5C10—C20—H20B109.5
O3—C8—H8C109.5H20A—C20—H20B109.5
H8A—C8—H8C109.5C10—C20—H20C109.5
H8B—C8—H8C109.5H20A—C20—H20C109.5
N1—C9—C10112.90 (10)H20B—C20—H20C109.5
N1—C9—H9A109.0C10—C21—H21A109.5
C10—C9—H9A109.0C10—C21—H21B109.5
N1—C9—H9B109.0H21A—C21—H21B109.5
C10—C9—H9B109.0C10—C21—H21C109.5
H9A—C9—H9B107.8H21A—C21—H21C109.5
C21—C10—C9107.99 (11)H21B—C21—H21C109.5
O2—Ni1—O1—C1167.96 (12)C9—N1—C7—C6170.27 (12)
N1—Ni1—O1—C121.33 (12)Ni1—N1—C7—C64.06 (19)
N2—Ni1—O1—C196.3 (3)C1—C6—C7—N111.4 (2)
O1—Ni1—O2—C11168.52 (11)C5—C6—C7—N1175.86 (13)
N1—Ni1—O2—C1197.0 (3)C7—N1—C9—C10112.05 (13)
N2—Ni1—O2—C1119.91 (11)Ni1—N1—C9—C1073.06 (12)
O2—Ni1—N1—C787.7 (3)N1—C9—C10—C21161.18 (11)
O1—Ni1—N1—C716.86 (11)N1—C9—C10—C2077.94 (14)
N2—Ni1—N1—C7155.28 (11)N1—C9—C10—C1940.32 (15)
O2—Ni1—N1—C986.7 (3)Ni1—O2—C11—C1612.44 (19)
O1—Ni1—N1—C9157.53 (9)Ni1—O2—C11—C12169.17 (9)
N2—Ni1—N1—C930.33 (9)O2—C11—C12—C13179.71 (13)
O2—Ni1—N2—C1714.38 (12)C16—C11—C12—C131.8 (2)
O1—Ni1—N2—C1785.4 (3)C11—C12—C13—C141.2 (2)
N1—Ni1—N2—C17156.90 (12)C18—O4—C14—C153.2 (2)
O2—Ni1—N2—C19153.30 (9)C18—O4—C14—C13177.78 (14)
O1—Ni1—N2—C1982.3 (3)C12—C13—C14—C150.3 (2)
N1—Ni1—N2—C1935.43 (9)C12—C13—C14—O4179.37 (13)
Ni1—O1—C1—C613.03 (19)O4—C14—C15—C16179.91 (13)
Ni1—O1—C1—C2168.29 (10)C13—C14—C15—C161.1 (2)
O1—C1—C2—C3179.21 (13)O2—C11—C16—C15179.35 (13)
C6—C1—C2—C30.4 (2)C12—C11—C16—C150.93 (19)
C1—C2—C3—C40.3 (2)O2—C11—C16—C176.8 (2)
C8—O3—C4—C59.4 (2)C12—C11—C16—C17171.57 (12)
C8—O3—C4—C3170.61 (14)C14—C15—C16—C110.5 (2)
C2—C3—C4—C50.2 (2)C14—C15—C16—C17173.07 (13)
C2—C3—C4—O3179.77 (14)C19—N2—C17—C16166.28 (12)
O3—C4—C5—C6179.65 (13)Ni1—N2—C17—C161.35 (19)
C3—C4—C5—C60.3 (2)C11—C16—C17—N212.5 (2)
O1—C1—C6—C5179.26 (13)C15—C16—C17—N2174.77 (13)
C2—C1—C6—C50.56 (19)C17—N2—C19—C10121.25 (13)
O1—C1—C6—C76.7 (2)Ni1—N2—C19—C1069.89 (13)
C2—C1—C6—C7171.96 (12)C21—C10—C19—N290.70 (14)
C4—C5—C6—C10.5 (2)C9—C10—C19—N228.64 (15)
C4—C5—C6—C7172.12 (12)C20—C10—C19—N2148.30 (11)

Experimental details

Crystal data
Chemical formula[Ni(C21H24N2O4)]
Mr427.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)15.6110 (7), 9.1151 (5), 26.8142 (12)
V3)3815.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.744, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
35644, 4362, 3946
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.05
No. of reflections4362
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

We thank Yasouj University and the University of Isfahan for partial support of this work.

References

First citationAkhtar, F. (1981). Acta Cryst. B37, 84–88.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfacial Electrochem. 117, 101–107.  CrossRef CAS Web of Science Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007a). Acta Cryst. E63, m1998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007b). Acta Cryst. E63, m2304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHealy, K. P. & Pletcher, D. (1978). J. Organomet. Chem. 161, 109–120.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShkolnikova, L. M., Yumal, E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. 11, 886–890.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds