organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Chloro-2-methyl­quinoline

aCollege of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 25 May 2009; accepted 27 May 2009; online 6 June 2009)

In the title compound, C10H8ClN, the crystal packing shows ππ stacking between the heterocyclic ring and the aromatic ring, with a centroid–centroid distance of 3.819 Å. The crystal studied was a racemic twin, the ratio of the twin components being 0.65 (7):0.35 (7).

Related literature

The title compound is an important inter­mediate in the pharmaceutical industry, see: Shen & Hartwig (2006[Shen, Q.-L. & Hartwig, F. (2006). J. Am. Chem. Soc. 128, 10028-10029.]); Ranu et al. (2000[Ranu, B. C., Hajra, A. & Jana, U. (2000). Tetrahedron Lett. 41. 531-533.]); Lee & Hartwig (2005[Lee, D.-Y. & Hartwig, J.-F. (2005). Org. Lett. 7, 1169-1172.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClN

  • Mr = 177.62

  • Orthorhombic, P c a 21

  • a = 12.7961 (9) Å

  • b = 5.0660 (4) Å

  • c = 13.1181 (9) Å

  • V = 850.38 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.47 × 0.46 × 0.23 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.917

  • 3943 measured reflections

  • 1821 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.09

  • 1821 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, 8-chloro-2-methylquinoline, is shown in Fig 1. It is an important intermediate of medecine industry (Shen et al., 2006; Ranu et al., 2000; Lee et al., 2005). The crystal packing shows π-π stacking between the N containing aromatic ring and the aromatic ring with the chloro substituent with a centroid-centroid distance of 3.819Å.

Related literature top

The title compound is an important intermediate in the pharmaceutical industry, see: Shen et al. (2006); Ranu et al. (2000); Lee et al. (2005).

Experimental top

A solution of 13 g of 2-chloroaniline in 200 mL chlorobenzene and 0.5 g of p-toluenesulfonic acid was heated to 393 K. 14 g of crotonaldehyde were added dropwise with in 1 h, then refluxed for 2 h. The solution was concentrated under reduced pressure to give rude product, which was then recrystallizated from dimethylbenzene to get 10 g of the product as a white solid. The yield was 57%. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atom were positioned geometrically (Caromatic—H = 0.95 Å, Cmethyl—H = 0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl). The crystal under investigation turned out to be a racemic twin with a ratio of the twin components of 0.65 (7) to 0.35 (7).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids.
8-Chloro-2-methylquinoline top
Crystal data top
C10H8ClNDx = 1.387 Mg m3
Mr = 177.62Melting point: 333 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2761 reflections
a = 12.7961 (9) Åθ = 3.1–27.0°
b = 5.0660 (4) ŵ = 0.39 mm1
c = 13.1181 (9) ÅT = 173 K
V = 850.38 (11) Å3Block, colourless
Z = 40.47 × 0.46 × 0.23 mm
F(000) = 368
Data collection top
Bruker SMART 1000 CCD
diffractometer
1821 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1616
Tmin = 0.840, Tmax = 0.917k = 26
3943 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.17P]
where P = (Fo2 + 2Fc2)/3
1821 reflections(Δ/σ)max = 0.004
111 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C10H8ClNV = 850.38 (11) Å3
Mr = 177.62Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.7961 (9) ŵ = 0.39 mm1
b = 5.0660 (4) ÅT = 173 K
c = 13.1181 (9) Å0.47 × 0.46 × 0.23 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1821 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1703 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.917Rint = 0.016
3943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.075H-atom parameters constrained
S = 1.09Δρmax = 0.20 e Å3
1821 reflectionsΔρmin = 0.16 e Å3
111 parameters
Special details top

Experimental. MS (m/z):M+ 177. 1H NMR(CDCl3,400 MHz,delta dppm): 2.83(s,3H,CH3), 7.38(m,2H,quinoline 3,6-H), 7.80(d, J=7.2 Hz,1H, quinoline 7-H),8.03(d, J =8.0 Hz,1H,quinoline 5-H), 8.00(d,J = 8.4 Hz, 1H,quinoline 4-H)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13075 (3)0.06692 (9)0.13065 (4)0.03616 (14)
C10.33097 (14)0.5106 (4)0.00528 (15)0.0286 (4)
C20.33961 (16)0.5667 (4)0.11114 (16)0.0336 (4)
H20.38730.69710.13450.040*
C30.27923 (15)0.4323 (3)0.17875 (15)0.0323 (4)
H30.28460.46750.24970.039*
C40.20807 (14)0.2386 (3)0.14243 (14)0.0277 (4)
C50.14115 (15)0.0969 (4)0.20801 (15)0.0327 (4)
H50.14270.12930.27930.039*
C60.07432 (15)0.0864 (4)0.16908 (16)0.0349 (4)
H60.02850.17920.21340.042*
C70.07260 (15)0.1394 (4)0.06385 (16)0.0330 (4)
H70.02660.27010.03770.040*
C80.13698 (14)0.0033 (4)0.00123 (15)0.0271 (4)
C90.20665 (13)0.1930 (3)0.03548 (13)0.0248 (3)
C100.39634 (17)0.6615 (5)0.06992 (17)0.0393 (5)
H10A0.47000.61370.06130.059*
H10B0.38770.85130.05820.059*
H10C0.37400.61810.13940.059*
N10.26803 (12)0.3289 (3)0.03180 (11)0.0268 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0393 (2)0.0441 (3)0.0251 (2)0.00280 (19)0.0036 (2)0.0074 (2)
C10.0279 (9)0.0261 (8)0.0319 (10)0.0032 (7)0.0008 (8)0.0037 (7)
C20.0343 (10)0.0291 (10)0.0374 (11)0.0015 (8)0.0081 (8)0.0030 (8)
C30.0397 (10)0.0305 (9)0.0266 (9)0.0039 (8)0.0052 (8)0.0054 (7)
C40.0320 (9)0.0253 (9)0.0259 (9)0.0060 (7)0.0009 (7)0.0001 (7)
C50.0412 (10)0.0344 (10)0.0223 (9)0.0063 (8)0.0002 (8)0.0031 (7)
C60.0339 (10)0.0382 (11)0.0325 (10)0.0010 (8)0.0045 (8)0.0086 (8)
C70.0297 (9)0.0334 (10)0.0360 (10)0.0033 (8)0.0023 (8)0.0029 (8)
C80.0294 (9)0.0310 (8)0.0209 (9)0.0033 (7)0.0029 (7)0.0013 (7)
C90.0253 (8)0.0245 (8)0.0247 (9)0.0056 (7)0.0025 (7)0.0005 (6)
C100.0408 (10)0.0375 (10)0.0396 (12)0.0067 (10)0.0004 (9)0.0082 (9)
N10.0265 (7)0.0274 (7)0.0264 (8)0.0039 (6)0.0013 (6)0.0030 (6)
Geometric parameters (Å, º) top
Cl1—C81.730 (2)C5—H50.9500
C1—N11.316 (3)C6—C71.407 (3)
C1—C21.422 (3)C6—H60.9500
C1—C101.503 (3)C7—C81.372 (3)
C2—C31.359 (3)C7—H70.9500
C2—H20.9500C8—C91.420 (3)
C3—C41.421 (2)C9—N11.367 (2)
C3—H30.9500C10—H10A0.9800
C4—C51.410 (3)C10—H10B0.9800
C4—C91.422 (2)C10—H10C0.9800
C5—C61.362 (3)
N1—C1—C2123.25 (18)C7—C6—H6119.7
N1—C1—C10116.99 (18)C8—C7—C6120.36 (18)
C2—C1—C10119.76 (18)C8—C7—H7119.8
C3—C2—C1119.55 (18)C6—C7—H7119.8
C3—C2—H2120.2C7—C8—C9121.19 (18)
C1—C2—H2120.2C7—C8—Cl1119.30 (15)
C2—C3—C4119.44 (18)C9—C8—Cl1119.49 (15)
C2—C3—H3120.3N1—C9—C8119.62 (16)
C4—C3—H3120.3N1—C9—C4123.21 (16)
C5—C4—C3122.42 (17)C8—C9—C4117.16 (16)
C5—C4—C9120.76 (17)C1—C10—H10A109.5
C3—C4—C9116.82 (16)C1—C10—H10B109.5
C6—C5—C4119.98 (18)H10A—C10—H10B109.5
C6—C5—H5120.0C1—C10—H10C109.5
C4—C5—H5120.0H10A—C10—H10C109.5
C5—C6—C7120.54 (18)H10B—C10—H10C109.5
C5—C6—H6119.7C1—N1—C9117.70 (16)
N1—C1—C2—C31.4 (3)Cl1—C8—C9—N10.1 (2)
C10—C1—C2—C3179.05 (18)C7—C8—C9—C41.1 (2)
C1—C2—C3—C40.3 (3)Cl1—C8—C9—C4179.55 (13)
C2—C3—C4—C5178.29 (18)C5—C4—C9—N1178.44 (15)
C2—C3—C4—C91.5 (2)C3—C4—C9—N11.4 (2)
C3—C4—C5—C6179.90 (17)C5—C4—C9—C81.2 (2)
C9—C4—C5—C60.1 (3)C3—C4—C9—C8178.99 (15)
C4—C5—C6—C71.1 (3)C2—C1—N1—C91.5 (3)
C5—C6—C7—C81.2 (3)C10—C1—N1—C9178.87 (16)
C6—C7—C8—C90.1 (3)C8—C9—N1—C1179.50 (16)
C6—C7—C8—Cl1178.36 (15)C4—C9—N1—C10.1 (2)
C7—C8—C9—N1178.55 (17)

Experimental details

Crystal data
Chemical formulaC10H8ClN
Mr177.62
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)12.7961 (9), 5.0660 (4), 13.1181 (9)
V3)850.38 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.47 × 0.46 × 0.23
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.840, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
3943, 1821, 1703
Rint0.016
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.09
No. of reflections1821
No. of parameters111
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was funded by the SIT program of Hunan University (2008).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, D.-Y. & Hartwig, J.-F. (2005). Org. Lett. 7, 1169–1172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanu, B. C., Hajra, A. & Jana, U. (2000). Tetrahedron Lett. 41. 531–533.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Q.-L. & Hartwig, F. (2006). J. Am. Chem. Soc. 128, 10028–10029.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds