metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4,6-tri­methyl­phen­yl)zinc(II)

aInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, D-07743 Jena, Germany
*Correspondence e-mail: m.we@uni-jena.de

(Received 15 June 2009; accepted 16 June 2009; online 20 June 2009)

The title compound, [Zn(C9H11)2] or Mes2Zn (Mes = mesityl = 2,4,6-trimethyl­phen­yl), crystallizes with a quarter of a mol­ecule in the asymmetric unit. The ZnII atom is in a strictly linear environment with a Zn—C bond length of 1.951 (5) Å. Due to the imposed 2/m symmetry, both aromatic rings are coplanar. One of the methyl groups is disordered over two equally occupied positions.

Related literature

For the first synthesis of dimesitylzinc, see: Seidel & Bürger (1981[Seidel, W. & Bürger, I. (1981). Z. Anorg. Allg. Chem. 473, 166-170.]). For related structures, see: Brooker et al. (1992[Brooker, S., Bertel, N., Stalke, D., Noltemeyer, M., Roesky, H. W., Sheldrick, G. M. & Edelmann, F. T. (1992). Organometallics, 11, 192-195.]); Cole et al. (2003[Cole, S. C., Coles, M. P. & Hitchcock, P. B. (2003). Dalton Trans. pp. 3663-3664.]); Markies et al. (1990[Markies, P. R., Schat, G., Akkermann, O. S. & Bickelhaupt, F. (1990). Organometallics, 9, 2243-2247.]); Sun et al. (1998[Sun, Y., Piers, W. E. & Parvez, M. (1998). Can. J. Chem. 76, 513-517.]); Weidenbruch et al. (1989[Weidenbruch, M., Herrndorf, M., Schäfer, A., Pohl, S. & Saak, W. (1989). J. Organomet. Chem. 361, 139-145.]); Westerhausen et al. (2005[Westerhausen, M., Ossberger, M. W., Alexander, J. S. & Ruhlandt-Senge, K. (2005). Z. Anorg. Allg. Chem. 631, 2836-2841.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H11)2]

  • Mr = 303.73

  • Tetragonal, P 42 /n c m

  • a = 18.3059 (9) Å

  • c = 5.0494 (4) Å

  • V = 1692.08 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 183 K

  • 0.05 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 10286 measured reflections

  • 1016 independent reflections

  • 685 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.270

  • S = 1.13

  • 1016 reflections

  • 53 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

After the first synthesis of dimesitylzinc by Seidel & Bürger (1981), its structure was determined more than 20 years later (Cole et al., 2003). Here we present another modification of this diarylzinc compound.

Whereas dialkylzinc is monomeric diphenylzinc crystallizes as a loose and unsymmetric dimer (Markies et al. (1990)). A planar molecule with a strictly two coordinated zinc centre is observed for bis(2,4,6-trimethylphenyl)zinc (dimesitylzinc) by Cole et al. (2003). Other substitution patterns of the arene ring also lead to monomeric, but not strictly linear molecules in the solid state. Sun et al. (1998) published the structure of bis(pentafluorophenyl)zinc and Brooker et al. (1992) reported the structure of bis[2,4,6-tris(rifluoromethyl)phenyl]zinc with a C—Zn—C bond angle of 170°. A The C—Zn—C angle decreases with increasing steric chain and a value of 165.9° was found in bis[2,4,6-tri(tert -butylphenyl]zinc by Westerhausen et al. (2005).

Related literature top

For the first synthesis of dimesitylzinc, see: Seidel & Bürger (1981). For related structures, see: Brooker et al. (1992); Cole et al. (2003); Markies et al. (1990); Sun et al. (1998); Weidenbruch et al. (1989); Westerhausen et al. (2005).

Experimental top

All manipulations were performed in an atmosphere of argon using standard Schlenk techniques. THF and toluene were dried (Na/benzophenone) and distilled prior to use. Mes2Zn was prepared according to a literature procedure (Seidel & Bürger, 1981). Recrystallization of Mes2Zn from toluene at +4%C led to the formation of single crystals of the title compound.

Refinement top

All hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for methyl groups) the isotropic displacement parameter of the corresponding carbon atom. One of the methyl groups is disordered over two equally occupied positions. The structure contains solvent accessible voids. But the final difference peak of 1.33 e/A3 is on a special position and could not be related to a solvent molecule.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of Mes2Zn, showing 40% probability displacement ellipsoides and the atom numbering scheme.
Bis(2,4,6-trimethylphenyl)zinc(II) top
Crystal data top
[Zn(C9H11)2]Dx = 1.192 Mg m3
Mr = 303.73Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/ncmCell parameters from 10286 reflections
Hall symbol: -P 4ac 2acθ = 3.2–27.5°
a = 18.3059 (9) ŵ = 1.44 mm1
c = 5.0494 (4) ÅT = 183 K
V = 1692.08 (18) Å3Octaeder, colourless
Z = 40.05 × 0.05 × 0.04 mm
F(000) = 640
Data collection top
Nonius KappaCCD
diffractometer
685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 2223
10286 measured reflectionsk = 2323
1016 independent reflectionsl = 65
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.270 w = 1/[σ2(Fo2) + (0.1807P)2 + 0.5133P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1016 reflectionsΔρmax = 1.33 e Å3
53 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (11)
Crystal data top
[Zn(C9H11)2]Z = 4
Mr = 303.73Mo Kα radiation
Tetragonal, P42/ncmµ = 1.44 mm1
a = 18.3059 (9) ÅT = 183 K
c = 5.0494 (4) Å0.05 × 0.05 × 0.04 mm
V = 1692.08 (18) Å3
Data collection top
Nonius KappaCCD
diffractometer
685 reflections with I > 2σ(I)
10286 measured reflectionsRint = 0.046
1016 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.270H-atom parameters constrained
S = 1.13Δρmax = 1.33 e Å3
1016 reflectionsΔρmin = 0.60 e Å3
53 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.50000.00000.0388 (6)
C10.0524 (2)0.5524 (2)0.2778 (9)0.0397 (13)
C20.1176 (2)0.5250 (2)0.3816 (7)0.0413 (11)
C30.1542 (2)0.5623 (2)0.5831 (8)0.0424 (11)
H3A0.19870.54310.65000.051*
C40.1268 (2)0.6268 (2)0.6875 (9)0.0432 (14)
C50.1687 (2)0.6687 (2)0.8986 (11)0.0455 (14)
H5A0.14180.71320.94520.068*0.50
H5B0.21700.68200.83020.068*0.50
H5C0.17430.63811.05630.068*0.50
C60.1516 (2)0.4566 (2)0.2699 (8)0.0503 (12)
H6A0.19330.44220.37990.075*
H6B0.16830.46590.08860.075*
H6C0.11530.41720.26870.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0385 (7)0.0385 (7)0.0394 (9)0.0034 (3)0.0015 (2)0.0015 (2)
C10.0435 (19)0.0435 (19)0.032 (2)0.008 (2)0.0036 (14)0.0036 (14)
C20.043 (2)0.044 (2)0.038 (2)0.0059 (17)0.0021 (16)0.0033 (16)
C30.046 (2)0.045 (2)0.0353 (19)0.0052 (16)0.0002 (16)0.0052 (17)
C40.051 (2)0.051 (2)0.028 (2)0.010 (3)0.0028 (14)0.0028 (14)
C50.054 (2)0.054 (2)0.029 (3)0.005 (3)0.0019 (16)0.0019 (16)
C60.052 (3)0.045 (2)0.054 (2)0.0005 (18)0.0011 (19)0.0024 (19)
Geometric parameters (Å, º) top
Zn1—C11.951 (5)C4—C3ii1.386 (5)
Zn1—C1i1.951 (5)C4—C51.522 (7)
C1—C2ii1.396 (5)C5—H5A0.9800
C1—C21.396 (5)C5—H5B0.9800
C2—C31.397 (6)C5—H5C0.9800
C2—C61.509 (6)C6—H6A0.9800
C3—C41.386 (5)C6—H6B0.9800
C3—H3A0.9500C6—H6C0.9800
C1—Zn1—C1i179.999 (1)C4—C5—H5A109.5
C2ii—C1—C2118.1 (5)C4—C5—H5B109.5
C2ii—C1—Zn1120.9 (2)H5A—C5—H5B109.5
C2—C1—Zn1120.9 (2)C4—C5—H5C109.5
C1—C2—C3120.6 (4)H5A—C5—H5C109.5
C1—C2—C6120.7 (4)H5B—C5—H5C109.5
C3—C2—C6118.7 (3)C2—C6—H6A109.5
C4—C3—C2121.3 (4)C2—C6—H6B109.5
C4—C3—H3A119.4H6A—C6—H6B109.5
C2—C3—H3A119.4C2—C6—H6C109.5
C3ii—C4—C3118.1 (5)H6A—C6—H6C109.5
C3ii—C4—C5120.9 (2)H6B—C6—H6C109.5
C3—C4—C5120.9 (2)
Symmetry codes: (i) x, y+1, z; (ii) y+1/2, x+1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H11)2]
Mr303.73
Crystal system, space groupTetragonal, P42/ncm
Temperature (K)183
a, c (Å)18.3059 (9), 5.0494 (4)
V3)1692.08 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.05 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10286, 1016, 685
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.270, 1.13
No. of reflections1016
No. of parameters53
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.60

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Band Godesberg, Germany) for generous financial support. We also acknowledge the funding of the Fonds der Chemischen Indunstrie (Frankfurt/Main, Germany). In addition, SK is very grateful to the Verband der Chemischen Industrie (VCI/FCI) for a PhD grant.

References

First citationBrooker, S., Bertel, N., Stalke, D., Noltemeyer, M., Roesky, H. W., Sheldrick, G. M. & Edelmann, F. T. (1992). Organometallics, 11, 192–195.  CSD CrossRef CAS Web of Science Google Scholar
First citationCole, S. C., Coles, M. P. & Hitchcock, P. B. (2003). Dalton Trans. pp. 3663–3664.  Web of Science CSD CrossRef Google Scholar
First citationMarkies, P. R., Schat, G., Akkermann, O. S. & Bickelhaupt, F. (1990). Organometallics, 9, 2243–2247.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeidel, W. & Bürger, I. (1981). Z. Anorg. Allg. Chem. 473, 166–170.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Piers, W. E. & Parvez, M. (1998). Can. J. Chem. 76, 513–517.  Web of Science CrossRef CAS Google Scholar
First citationWeidenbruch, M., Herrndorf, M., Schäfer, A., Pohl, S. & Saak, W. (1989). J. Organomet. Chem. 361, 139–145.  CSD CrossRef CAS Web of Science Google Scholar
First citationWesterhausen, M., Ossberger, M. W., Alexander, J. S. & Ruhlandt-Senge, K. (2005). Z. Anorg. Allg. Chem. 631, 2836-2841.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds