organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1692-o1693

1-Benzoyl-3-methyl-2,6-di­phenyl-4-piperidone

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 18 June 2009; accepted 22 June 2009; online 27 June 2009)

In the title moleclue, C25H23NO2, the 4-piperidone ring adopts a boat conformation. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond. In the crystal, mol­ecules are connected through weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background, see: Grishina et al. (1994[Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 401-1426.]); Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent No. 74-03987.]); Perumal et al. (2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Ponnuswamy et al. (2002[Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.]). For related structures, see: Gayathri et al. (2008[Gayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008). Acta Cryst. E64, o1973.]); Nithya et al. (2009[Nithya, P., Hathwar, V. R., Maiyalagan, T., Kazak, C. & Nawaz Khan, F. (2009). Acta Cryst. E65, o439.]). For details of the synthesis, see: Noller & Baliah (1948[Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23NO2

  • Mr = 369.44

  • Monoclinic, P 21 /n

  • a = 11.7602 (6) Å

  • b = 9.2404 (3) Å

  • c = 19.1722 (9) Å

  • β = 98.797 (4)°

  • V = 2058.93 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.36 × 0.24 × 0.18 mm

Data collection
  • Oxford Xcalibur Eos(Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Tarnton, England.]) Tmin = 0.942, Tmax = 0.987

  • 22931 measured reflections

  • 3831 independent reflections

  • 2515 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.00

  • 3831 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.98 2.26 2.7235 (17) 108
C9—H9A⋯O1i 0.97 2.56 3.4446 (19) 152
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Tarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Tarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

4-piperidones and their derivatives present potential medical applications (Grishina et al., 1994, Ponnuswamy et al., 2002, Nalanishi et al., 1974). Piperidones are also reported to possess analgesic,anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activity (Perumal et al., 2001). In continouus of our interest in piperidones (Nithya et al., 2009), the crystal structure of title compound is discussed in this paper.

In the title molecule, C25H23NO2 (Fig. 1), the piperidine ring adopts a boat conformation. In the related crystal structure, the piperidine ring also adopts a chair conformation (Gayathri et al., 2008) but the three substituents on the C atoms of the ring are in axial orientations. In the crystal, the molecules are connected through weak intermolecular C—H···O hydrogen bonds. (Fig. 2).

Related literature top

For general background, see: Grishina et al. (1994); Nalanishi et al. (1974); Perumal et al. (2001); Ponnuswamy et al. (2002). For a related structure, see: Gayathri et al. (2008); (Nithya et al. 2009). For details of the synthesis, see: Noller & Baliah (1948).

Experimental top

To a well stirred solution of 3 methyl-2,6-bis(phenyl)piperidin-4-one (1 equiv.) and triethylamine (1 equiv.) in freshly distilled benzene, benzoyl chloride (1 equiv.) in benzene was added dropwise. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with DCM, washed well with sodium bicarbonate solution and dried over anhydrous sodium sulfate. This upon evaporation and subsequent recrystallization in distilled ethanol furnished the diffraction-quality crystals of the title compound.

Refinement top

All H atoms in were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93, 0.97 and 0.96Å for aromatic, methylene and methyl H atoms respectively and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability displacement ellipsoids. Dotted bond indicates the intramolecular C—H···O hydrogen bond.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound. The dotted lines indicate intermolecular C—H···O hydrogen bonds.
1-Benzoyl-3-methyl-2,6-diphenyl-4-piperidone top
Crystal data top
C25H23NO2F(000) = 784
Mr = 369.44Dx = 1.192 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 983 reflections
a = 11.7602 (6) Åθ = 2.0–21.3°
b = 9.2404 (3) ŵ = 0.08 mm1
c = 19.1722 (9) ÅT = 290 K
β = 98.797 (4)°Block, colorless
V = 2058.93 (16) Å30.36 × 0.24 × 0.18 mm
Z = 4
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
3831 independent reflections
Radiation source: Enhance (Mo) X-ray Source2515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.942, Tmax = 0.987k = 1111
22931 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C25H23NO2V = 2058.93 (16) Å3
Mr = 369.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7602 (6) ŵ = 0.08 mm1
b = 9.2404 (3) ÅT = 290 K
c = 19.1722 (9) Å0.36 × 0.24 × 0.18 mm
β = 98.797 (4)°
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2515 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.987Rint = 0.044
22931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.12 e Å3
3831 reflectionsΔρmin = 0.15 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.84703 (9)0.33889 (11)0.02444 (6)0.0410 (3)
O10.85789 (10)0.57741 (11)0.00176 (6)0.0660 (3)
O21.02467 (10)0.01000 (12)0.12851 (6)0.0696 (4)
C10.89524 (13)0.34406 (15)0.13261 (8)0.0502 (4)
H10.96160.30600.10640.060*
C20.87411 (16)0.32413 (18)0.20472 (9)0.0660 (5)
H20.92680.27390.22710.079*
C30.77585 (19)0.3780 (2)0.24350 (10)0.0777 (6)
H30.76100.36230.29200.093*
C40.69948 (17)0.4549 (2)0.21091 (11)0.0813 (6)
H40.63270.49130.23730.098*
C50.72094 (15)0.47875 (17)0.13942 (10)0.0644 (5)
H50.67010.53420.11790.077*
C60.81811 (12)0.42043 (14)0.09919 (8)0.0444 (4)
C70.84216 (12)0.45127 (15)0.02206 (8)0.0458 (4)
C80.89332 (12)0.36834 (15)0.09936 (7)0.0446 (4)
H80.92860.46450.10030.053*
C90.99148 (12)0.26268 (15)0.12180 (8)0.0509 (4)
H9A1.05530.28730.09740.061*
H9B1.01750.27390.17200.061*
C100.95985 (13)0.10771 (16)0.10705 (8)0.0460 (4)
C110.84348 (12)0.07997 (14)0.06341 (7)0.0423 (4)
H110.78540.09680.09410.051*
C120.81844 (11)0.18755 (14)0.00098 (7)0.0397 (3)
H120.86850.16160.03350.048*
C130.69509 (12)0.17244 (14)0.03516 (8)0.0437 (4)
C140.60407 (14)0.21590 (17)0.00264 (9)0.0575 (4)
H140.61820.25900.04170.069*
C150.49176 (15)0.1960 (2)0.03526 (11)0.0741 (5)
H150.43120.22700.01300.089*
C160.46924 (17)0.1311 (2)0.09994 (12)0.0814 (6)
H160.39370.11630.12130.098*
C170.55856 (18)0.0882 (2)0.13305 (10)0.0820 (6)
H170.54370.04540.17740.098*
C180.67089 (15)0.10815 (17)0.10088 (9)0.0627 (5)
H180.73100.07790.12380.075*
C190.80010 (13)0.37833 (15)0.14586 (8)0.0467 (4)
C200.71183 (14)0.47793 (16)0.12868 (9)0.0580 (4)
H200.71100.53620.08910.070*
C210.62531 (16)0.49192 (18)0.16932 (10)0.0708 (5)
H210.56650.55850.15680.085*
C220.62607 (17)0.4075 (2)0.22834 (11)0.0751 (5)
H220.56810.41720.25600.090*
C230.71230 (17)0.3091 (2)0.24616 (10)0.0790 (6)
H230.71270.25120.28590.095*
C240.79907 (15)0.29535 (18)0.20530 (9)0.0651 (5)
H240.85780.22870.21830.078*
C250.83049 (14)0.07659 (16)0.03829 (9)0.0588 (4)
H25A0.88660.09720.00820.088*
H25B0.75470.09090.01260.088*
H25C0.84210.14020.07830.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0435 (7)0.0352 (6)0.0436 (7)0.0058 (5)0.0047 (6)0.0012 (5)
O10.0943 (9)0.0367 (6)0.0664 (8)0.0083 (6)0.0106 (6)0.0005 (5)
O20.0658 (8)0.0648 (7)0.0731 (8)0.0187 (6)0.0059 (6)0.0089 (6)
C10.0486 (10)0.0461 (8)0.0549 (10)0.0004 (7)0.0054 (8)0.0059 (7)
C20.0783 (13)0.0635 (11)0.0584 (12)0.0004 (9)0.0178 (10)0.0029 (9)
C30.0997 (16)0.0817 (13)0.0488 (11)0.0026 (12)0.0016 (11)0.0111 (10)
C40.0782 (14)0.0880 (14)0.0684 (14)0.0109 (11)0.0188 (11)0.0197 (11)
C50.0589 (11)0.0628 (10)0.0694 (13)0.0128 (8)0.0032 (9)0.0124 (9)
C60.0434 (9)0.0375 (7)0.0514 (10)0.0046 (7)0.0042 (7)0.0080 (7)
C70.0429 (9)0.0381 (8)0.0570 (10)0.0028 (6)0.0096 (7)0.0036 (7)
C80.0457 (9)0.0403 (8)0.0462 (9)0.0068 (6)0.0025 (7)0.0035 (6)
C90.0448 (9)0.0571 (9)0.0501 (10)0.0043 (7)0.0051 (7)0.0005 (7)
C100.0459 (9)0.0530 (9)0.0412 (9)0.0058 (7)0.0132 (7)0.0062 (7)
C110.0409 (8)0.0381 (7)0.0499 (9)0.0006 (6)0.0134 (7)0.0033 (6)
C120.0402 (8)0.0341 (7)0.0455 (8)0.0030 (6)0.0082 (6)0.0006 (6)
C130.0448 (9)0.0357 (7)0.0495 (9)0.0065 (6)0.0039 (7)0.0023 (6)
C140.0470 (10)0.0558 (9)0.0681 (11)0.0046 (8)0.0037 (9)0.0043 (8)
C150.0456 (11)0.0762 (12)0.0989 (15)0.0021 (9)0.0056 (10)0.0002 (11)
C160.0551 (13)0.0854 (14)0.0945 (16)0.0163 (10)0.0178 (11)0.0089 (12)
C170.0756 (14)0.0943 (14)0.0688 (13)0.0248 (12)0.0122 (11)0.0089 (11)
C180.0601 (11)0.0669 (11)0.0595 (11)0.0134 (9)0.0036 (9)0.0088 (9)
C190.0495 (9)0.0436 (8)0.0463 (9)0.0037 (7)0.0048 (7)0.0075 (7)
C200.0656 (12)0.0479 (9)0.0615 (11)0.0058 (8)0.0131 (9)0.0020 (8)
C210.0699 (13)0.0615 (11)0.0843 (14)0.0134 (9)0.0221 (11)0.0084 (10)
C220.0775 (14)0.0742 (12)0.0812 (14)0.0013 (11)0.0370 (11)0.0141 (11)
C230.0956 (15)0.0831 (13)0.0641 (12)0.0116 (12)0.0309 (11)0.0071 (10)
C240.0705 (12)0.0706 (11)0.0567 (11)0.0142 (9)0.0179 (9)0.0043 (9)
C250.0631 (11)0.0419 (9)0.0715 (12)0.0009 (7)0.0102 (9)0.0042 (8)
Geometric parameters (Å, º) top
N1—C71.3641 (17)C12—C131.5154 (19)
N1—C81.4813 (17)C12—H120.9800
N1—C121.4916 (16)C13—C141.378 (2)
O1—C71.2338 (16)C13—C181.383 (2)
O2—C101.2123 (16)C14—C151.385 (2)
C1—C21.379 (2)C14—H140.9300
C1—C61.3818 (19)C15—C161.366 (3)
C1—H10.9300C15—H150.9300
C2—C31.369 (2)C16—C171.367 (3)
C2—H20.9300C16—H160.9300
C3—C41.369 (3)C17—C181.382 (2)
C3—H30.9300C17—H170.9300
C4—C51.373 (2)C18—H180.9300
C4—H40.9300C19—C241.375 (2)
C5—C61.386 (2)C19—C201.389 (2)
C5—H50.9300C20—C211.379 (2)
C6—C71.490 (2)C20—H200.9300
C8—C191.5179 (19)C21—C221.374 (2)
C8—C91.523 (2)C21—H210.9300
C8—H80.9800C22—C231.366 (3)
C9—C101.496 (2)C22—H220.9300
C9—H9A0.9700C23—C241.384 (2)
C9—H9B0.9700C23—H230.9300
C10—C111.513 (2)C24—H240.9300
C11—C251.525 (2)C25—H25A0.9600
C11—C121.5491 (19)C25—H25B0.9600
C11—H110.9800C25—H25C0.9600
C7—N1—C8117.80 (11)C13—C12—C11110.48 (10)
C7—N1—C12122.12 (11)N1—C12—H12107.5
C8—N1—C12119.80 (10)C13—C12—H12107.5
C2—C1—C6120.18 (15)C11—C12—H12107.5
C2—C1—H1119.9C14—C13—C18118.13 (14)
C6—C1—H1119.9C14—C13—C12121.44 (13)
C3—C2—C1120.25 (17)C18—C13—C12120.37 (13)
C3—C2—H2119.9C13—C14—C15120.67 (16)
C1—C2—H2119.9C13—C14—H14119.7
C2—C3—C4119.96 (18)C15—C14—H14119.7
C2—C3—H3120.0C16—C15—C14120.49 (17)
C4—C3—H3120.0C16—C15—H15119.8
C3—C4—C5120.37 (17)C14—C15—H15119.8
C3—C4—H4119.8C15—C16—C17119.53 (17)
C5—C4—H4119.8C15—C16—H16120.2
C4—C5—C6120.21 (17)C17—C16—H16120.2
C4—C5—H5119.9C16—C17—C18120.27 (18)
C6—C5—H5119.9C16—C17—H17119.9
C1—C6—C5118.97 (15)C18—C17—H17119.9
C1—C6—C7121.30 (13)C17—C18—C13120.90 (17)
C5—C6—C7119.54 (14)C17—C18—H18119.6
O1—C7—N1121.58 (14)C13—C18—H18119.6
O1—C7—C6119.37 (12)C24—C19—C20117.71 (14)
N1—C7—C6119.05 (12)C24—C19—C8123.47 (14)
N1—C8—C19112.91 (11)C20—C19—C8118.81 (13)
N1—C8—C9107.85 (11)C21—C20—C19121.17 (16)
C19—C8—C9117.22 (12)C21—C20—H20119.4
N1—C8—H8106.0C19—C20—H20119.4
C19—C8—H8106.0C22—C21—C20119.99 (17)
C9—C8—H8106.0C22—C21—H21120.0
C10—C9—C8113.86 (12)C20—C21—H21120.0
C10—C9—H9A108.8C23—C22—C21119.69 (17)
C8—C9—H9A108.8C23—C22—H22120.2
C10—C9—H9B108.8C21—C22—H22120.2
C8—C9—H9B108.8C22—C23—C24120.21 (17)
H9A—C9—H9B107.7C22—C23—H23119.9
O2—C10—C9121.58 (14)C24—C23—H23119.9
O2—C10—C11122.02 (13)C19—C24—C23121.23 (16)
C9—C10—C11116.40 (12)C19—C24—H24119.4
C10—C11—C25111.95 (12)C23—C24—H24119.4
C10—C11—C12111.57 (11)C11—C25—H25A109.5
C25—C11—C12111.51 (12)C11—C25—H25B109.5
C10—C11—H11107.2H25A—C25—H25B109.5
C25—C11—H11107.2C11—C25—H25C109.5
C12—C11—H11107.2H25A—C25—H25C109.5
N1—C12—C13112.34 (11)H25B—C25—H25C109.5
N1—C12—C11111.18 (11)
C6—C1—C2—C31.0 (2)C7—N1—C12—C11173.99 (12)
C1—C2—C3—C41.6 (3)C8—N1—C12—C110.20 (16)
C2—C3—C4—C50.1 (3)C10—C11—C12—N146.08 (15)
C3—C4—C5—C62.4 (3)C25—C11—C12—N1172.09 (11)
C2—C1—C6—C51.3 (2)C10—C11—C12—C13171.51 (11)
C2—C1—C6—C7176.24 (13)C25—C11—C12—C1362.48 (15)
C4—C5—C6—C13.0 (2)N1—C12—C13—C1454.97 (17)
C4—C5—C6—C7178.01 (15)C11—C12—C13—C1469.80 (16)
C8—N1—C7—O111.4 (2)N1—C12—C13—C18127.97 (14)
C12—N1—C7—O1174.69 (12)C11—C12—C13—C18107.26 (15)
C8—N1—C7—C6168.16 (12)C18—C13—C14—C150.3 (2)
C12—N1—C7—C65.76 (19)C12—C13—C14—C15177.39 (14)
C1—C6—C7—O1113.48 (16)C13—C14—C15—C160.9 (3)
C5—C6—C7—O161.43 (19)C14—C15—C16—C171.2 (3)
C1—C6—C7—N166.08 (18)C15—C16—C17—C181.0 (3)
C5—C6—C7—N1119.00 (16)C16—C17—C18—C130.4 (3)
C7—N1—C8—C19103.78 (14)C14—C13—C18—C170.1 (2)
C12—N1—C8—C1982.15 (15)C12—C13—C18—C17177.22 (15)
C7—N1—C8—C9125.09 (13)N1—C8—C19—C24124.75 (15)
C12—N1—C8—C948.98 (15)C9—C8—C19—C241.5 (2)
N1—C8—C9—C1052.73 (15)N1—C8—C19—C2056.42 (17)
C19—C8—C9—C1076.00 (16)C9—C8—C19—C20177.30 (13)
C8—C9—C10—O2172.09 (13)C24—C19—C20—C210.8 (2)
C8—C9—C10—C118.52 (17)C8—C19—C20—C21179.69 (14)
O2—C10—C11—C2511.66 (19)C19—C20—C21—C220.6 (3)
C9—C10—C11—C25167.74 (12)C20—C21—C22—C230.5 (3)
O2—C10—C11—C12137.43 (14)C21—C22—C23—C240.5 (3)
C9—C10—C11—C1241.97 (16)C20—C19—C24—C230.8 (2)
C7—N1—C12—C1361.62 (16)C8—C19—C24—C23179.67 (15)
C8—N1—C12—C13124.58 (13)C22—C23—C24—C190.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.982.262.7235 (17)108
C9—H9A···O1i0.972.563.4446 (19)152
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H23NO2
Mr369.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)11.7602 (6), 9.2404 (3), 19.1722 (9)
β (°) 98.797 (4)
V3)2058.93 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.24 × 0.18
Data collection
DiffractometerOxford Xcalibur Eos(Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.942, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
22931, 3831, 2515
Rint0.044
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.00
No. of reflections3831
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), WinGX (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.98002.26002.7235 (17)108.00
C9—H9A···O1i0.97002.56003.4446 (19)152.00
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

We thank the Department of Science and Technology, India for the use of the CCD facility setup under the FIST–DST program at SSCU, IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008). Acta Cryst. E64, o1973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 401–1426.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent No. 74-03987.  Google Scholar
First citationNithya, P., Hathwar, V. R., Maiyalagan, T., Kazak, C. & Nawaz Khan, F. (2009). Acta Cryst. E65, o439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Tarnton, England.  Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationPonnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1692-o1693
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds