organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1505-o1506

N′-(5-Chloro-2-hy­droxy­benzyl­­idene)nicotinohydrazide

aDepartment of Chemistry and Chemical Engineering, Zaozhuang University, Zaozhuang Shandong 277160, People's Republic of China
*Correspondence e-mail: renchonggui@163.com

(Received 25 May 2009; accepted 2 June 2009; online 6 June 2009)

There are two independent Schiff base mol­ecules in the asymmetric unit of the title compound, C13H10ClN3O2. The dihedral angles between the benzene and pyridine rings are 12.8 (2) and 1.9 (2)° in the two mol­ecules. Intra­molecular O—H⋯N hydrogen bonds are observed. Mol­ecules are linked into centrosymmetric R44(26) motifs by N—H⋯O and N—H⋯N inter­actions.

Related literature

For the biological properties of Schiff base compounds, see: Jeewoth et al. (1999[Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]). For metal complexes of Schiff base compounds, see: Shivakumar et al. (2008[Shivakumar, K., Shashidhar, T., Reddy, P. V. & Halli, M. B. (2008). J. Coord. Chem. 61, 2274-2287.]); Prabhakaran et al. (2006[Prabhakaran, R., Huang, R. & Natarajan, K. (2006). Inorg. Chim. Acta, 359, 3359-3362.]); Dhar et al. (2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Inorg. Chim. Acta, 358, 2437-2444.]). For related structures, see: Cui et al. (2007[Cui, J.-C., Pan, Q.-X., Yin, H.-D. & Qiao, Y.-L. (2007). Acta Cryst. E63, o2633.]); Jing et al. (2007[Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4902.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]); Lin et al. (2007[Lin, X.-C., Yin, H. & Lin, Y. (2007). Acta Cryst. E63, o2864.]); Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Xue et al. (2008[Xue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.]); Wang et al. (2008[Wang, X.-Y., Cao, G.-B. & Yang, T. (2008). Acta Cryst. E64, o2022.]); Lu (2008[Lu, J.-F. (2008). Acta Cryst. E64, o2032.]); Diao et al. (2008[Diao, Y.-P., Huang, S.-S., Zhang, H.-L. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 165-166.]); Qiu (2009[Qiu, X.-Y. (2009). Z. Kristallogr. New Cryst. Struct. 224, 109-110.]); Mohd Lair et al. (2009a[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.],b[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClN3O2

  • Mr = 275.69

  • Monoclinic, P 21 /n

  • a = 9.792 (2) Å

  • b = 23.358 (3) Å

  • c = 10.926 (2) Å

  • β = 96.848 (2)°

  • V = 2481.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.921

  • 14387 measured reflections

  • 5342 independent reflections

  • 3193 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 1.01

  • 5342 reflections

  • 351 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.594 (2) 145
O3—H3⋯N4 0.82 1.82 2.538 (2) 146
N5—H5⋯N3i 0.891 (10) 2.109 (11) 2.991 (3) 171 (2)
N2—H2⋯O3 0.892 (10) 2.097 (10) 2.984 (2) 173 (2)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Schiff base compounds show excellent biological properties (Jeewoth et al., 1999; Ren et al., 2002; Eltayeb et al., 2008; Sinha et al., 2008). Moreover, the Schiff base compounds have been widely used as versatile ligands in coordination chemistry (Shivakumar et al., 2008; Prabhakaran et al., 2006; Dhar et al., 2005). We report here the crystal structure of the title compound .In the title compound, Fig. 1, there two independent molecules in the symmetric unit.The dihedral angles between the benzene and pyridine rings are 12.8 (2) and 1.9 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987) and comparable to those in other similar compounds (Cui et al., 2007; Jing et al., 2007; Ma et al., 2008; Salhin et al., 2007; Lin et al., 2007; Alhadi et al., 2008; Xue et al., 2008; Wang et al., 2008; Lu, 2008; Diao et al., 2008; Qiu, 2009; Lair et al., 2009a,b). The molecules of the title compound are linked into centrosymmetric R44(26) motifs by N–H···O and N–H···N interactions (Table 1, Fig. 2) (Bernstein et al., 1995).

Related literature top

For the biological properties of Schiff base compounds, see: Jeewoth et al. (1999); Ren et al. (2002); Eltayeb et al. (2008); Sinha et al. (2008). For metal complexes of Schiff base compounds, see: Shivakumar et al. (2008); Prabhakaran et al. (2006); Dhar et al. (2005). For related structures, see: Cui et al. (2007); Jing et al. (2007); Ma et al. (2008); Salhin et al. (2007); Lin et al. (2007); Alhadi et al. (2008); Xue et al. (2008); Wang et al. (2008); Lu (2008); Diao et al. (2008); Qiu (2009); Mohd Lair et al. (2009a,b). For reference structural data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

All the starting materials were obtained with AR grade from Lancaster. 5-Chloro-2-hydroxybenzaldehyde (1.0 mmol, 157.1 mg) and nicotinohydrazide (1.0 mmol, 137.1 mg) were refluxed in a 30 ml methanol solution for 30 min to give a clear yellow solution. Yellow block-shaped single crystals of the compound were obtained by slow evaporation of the solution for five days at room temperature.

Refinement top

H2 and H5 were located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with Uiso restrained to 0.08 Å2. Other H atoms were constrained to ideal geometries, with d(C–H) = 0.93 Å, d(O–H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with 30% probability ellipsoids. The intramolecular O–H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Molecular packing of the compound with hydrogen bonds drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(I) top
Crystal data top
C13H10ClN3O2F(000) = 1136
Mr = 275.69Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2236 reflections
a = 9.792 (2) Åθ = 2.6–24.5°
b = 23.358 (3) ŵ = 0.31 mm1
c = 10.926 (2) ÅT = 298 K
β = 96.848 (2)°Block, yellow
V = 2481.2 (8) Å30.30 × 0.30 × 0.27 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5342 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.913, Tmax = 0.921k = 2927
14387 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
5342 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H10ClN3O2V = 2481.2 (8) Å3
Mr = 275.69Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.792 (2) ŵ = 0.31 mm1
b = 23.358 (3) ÅT = 298 K
c = 10.926 (2) Å0.30 × 0.30 × 0.27 mm
β = 96.848 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3193 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.921Rint = 0.042
14387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
5342 reflectionsΔρmin = 0.24 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31666 (7)0.15824 (3)0.49570 (7)0.0648 (2)
Cl20.67723 (7)0.10226 (3)0.57393 (6)0.0648 (2)
N10.28860 (19)0.22587 (8)0.70899 (16)0.0414 (5)
N20.4128 (2)0.20261 (8)0.75424 (18)0.0421 (5)
N30.7948 (2)0.13722 (8)0.92250 (17)0.0438 (5)
N40.29718 (18)0.00154 (8)0.94498 (16)0.0387 (4)
N50.2156 (2)0.01091 (8)1.03441 (16)0.0402 (5)
N60.0434 (2)0.04219 (10)1.3111 (2)0.0659 (6)
O10.13564 (17)0.31528 (6)0.65672 (16)0.0520 (4)
H10.20750.29810.67840.078*
O20.50725 (19)0.29034 (7)0.76057 (19)0.0755 (6)
O30.39503 (17)0.07872 (6)0.81707 (15)0.0486 (4)
H30.34840.06580.86820.073*
O40.17570 (18)0.08396 (7)1.05029 (15)0.0598 (5)
C10.0545 (2)0.21766 (9)0.63088 (19)0.0368 (5)
C20.0344 (2)0.27712 (9)0.62187 (19)0.0394 (5)
C30.0937 (3)0.29868 (10)0.5765 (2)0.0496 (6)
H3A0.10720.33810.57150.059*
C40.2008 (3)0.26227 (11)0.5390 (2)0.0504 (6)
H40.28650.27700.50880.060*
C50.1810 (2)0.20380 (10)0.5461 (2)0.0438 (6)
C60.0555 (2)0.18151 (10)0.59222 (19)0.0415 (6)
H60.04390.14200.59770.050*
C70.1862 (2)0.19285 (10)0.6792 (2)0.0411 (6)
H70.19570.15340.68820.049*
C80.5195 (2)0.23961 (10)0.7816 (2)0.0444 (6)
C90.6530 (2)0.21501 (9)0.83757 (19)0.0359 (5)
C100.7653 (3)0.25086 (10)0.8548 (2)0.0483 (6)
H100.75670.28900.83040.058*
C110.8900 (3)0.23037 (11)0.9080 (2)0.0585 (7)
H110.96580.25450.92240.070*
C120.9001 (3)0.17355 (11)0.9395 (2)0.0509 (6)
H120.98490.15970.97460.061*
C130.6739 (2)0.15881 (9)0.8743 (2)0.0425 (6)
H130.59850.13430.86490.051*
C140.4402 (2)0.02227 (9)0.79497 (18)0.0357 (5)
C150.4588 (2)0.03497 (9)0.7643 (2)0.0380 (5)
C160.5456 (2)0.04896 (10)0.6773 (2)0.0476 (6)
H160.55790.08720.65720.057*
C170.6134 (2)0.00709 (10)0.6205 (2)0.0464 (6)
H170.67240.01690.56320.056*
C180.5936 (2)0.04957 (10)0.6489 (2)0.0446 (6)
C190.5080 (2)0.06441 (9)0.7344 (2)0.0414 (6)
H190.49510.10280.75230.050*
C200.3537 (2)0.03840 (9)0.88893 (19)0.0395 (5)
H200.34000.07670.90760.047*
C210.1567 (2)0.03509 (10)1.0846 (2)0.0419 (6)
C220.0660 (2)0.02299 (9)1.18211 (19)0.0401 (5)
C230.0067 (3)0.06862 (11)1.2362 (2)0.0538 (7)
H230.02360.10591.21240.065*
C240.0774 (3)0.05834 (13)1.3256 (2)0.0651 (8)
H240.11930.08851.36240.078*
C250.0986 (3)0.00294 (14)1.3595 (2)0.0657 (8)
H250.15540.00341.42060.079*
C260.0382 (3)0.03068 (10)1.2238 (2)0.0542 (7)
H260.07900.06161.18870.065*
H50.206 (3)0.0477 (5)1.053 (2)0.080*
H20.411 (3)0.1663 (5)0.779 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0444 (4)0.0649 (5)0.0827 (5)0.0128 (3)0.0025 (4)0.0037 (4)
Cl20.0697 (5)0.0567 (4)0.0709 (5)0.0172 (4)0.0197 (4)0.0037 (3)
N10.0369 (12)0.0387 (11)0.0479 (11)0.0041 (9)0.0020 (9)0.0047 (9)
N20.0351 (12)0.0342 (11)0.0552 (12)0.0012 (9)0.0016 (10)0.0047 (9)
N30.0362 (12)0.0371 (11)0.0574 (13)0.0001 (9)0.0023 (10)0.0029 (9)
N40.0374 (12)0.0354 (11)0.0432 (11)0.0026 (9)0.0048 (9)0.0047 (9)
N50.0422 (12)0.0333 (11)0.0465 (11)0.0001 (9)0.0116 (10)0.0040 (9)
N60.0726 (17)0.0628 (15)0.0674 (15)0.0088 (13)0.0299 (13)0.0101 (12)
O10.0514 (11)0.0317 (9)0.0697 (11)0.0002 (8)0.0060 (10)0.0021 (8)
O20.0604 (13)0.0346 (11)0.1240 (16)0.0032 (9)0.0194 (12)0.0196 (10)
O30.0549 (11)0.0292 (9)0.0649 (11)0.0015 (8)0.0206 (9)0.0034 (7)
O40.0713 (13)0.0321 (10)0.0788 (12)0.0011 (9)0.0205 (10)0.0045 (9)
C10.0369 (14)0.0353 (13)0.0390 (13)0.0020 (10)0.0073 (10)0.0041 (10)
C20.0432 (15)0.0366 (13)0.0387 (13)0.0007 (11)0.0057 (11)0.0002 (10)
C30.0506 (17)0.0368 (14)0.0600 (16)0.0088 (12)0.0013 (13)0.0051 (11)
C40.0419 (16)0.0554 (17)0.0527 (16)0.0080 (13)0.0008 (12)0.0060 (12)
C50.0358 (15)0.0476 (15)0.0481 (14)0.0051 (11)0.0056 (11)0.0018 (11)
C60.0430 (15)0.0354 (13)0.0467 (14)0.0024 (11)0.0079 (11)0.0033 (10)
C70.0426 (15)0.0326 (13)0.0482 (14)0.0022 (11)0.0052 (12)0.0025 (10)
C80.0445 (16)0.0353 (14)0.0523 (15)0.0002 (11)0.0012 (12)0.0038 (11)
C90.0376 (14)0.0289 (12)0.0410 (12)0.0028 (10)0.0042 (10)0.0003 (9)
C100.0498 (17)0.0308 (13)0.0635 (16)0.0067 (11)0.0035 (13)0.0037 (11)
C110.0433 (16)0.0477 (16)0.0815 (19)0.0131 (13)0.0043 (14)0.0003 (14)
C120.0367 (15)0.0520 (17)0.0625 (16)0.0016 (12)0.0000 (12)0.0000 (12)
C130.0338 (14)0.0358 (13)0.0571 (15)0.0048 (11)0.0027 (12)0.0019 (11)
C140.0332 (13)0.0330 (12)0.0399 (13)0.0017 (10)0.0006 (10)0.0050 (10)
C150.0335 (13)0.0355 (13)0.0444 (13)0.0027 (10)0.0020 (11)0.0005 (10)
C160.0530 (16)0.0365 (14)0.0542 (15)0.0072 (12)0.0097 (13)0.0051 (11)
C170.0454 (16)0.0496 (15)0.0457 (14)0.0044 (12)0.0121 (12)0.0040 (12)
C180.0449 (15)0.0427 (14)0.0455 (14)0.0065 (11)0.0029 (12)0.0007 (11)
C190.0445 (15)0.0330 (13)0.0459 (13)0.0020 (11)0.0025 (11)0.0062 (10)
C200.0417 (14)0.0281 (12)0.0482 (14)0.0016 (10)0.0037 (11)0.0049 (10)
C210.0393 (14)0.0365 (14)0.0484 (14)0.0008 (11)0.0004 (11)0.0002 (11)
C220.0367 (14)0.0385 (14)0.0439 (13)0.0042 (10)0.0005 (11)0.0027 (10)
C230.0542 (17)0.0453 (15)0.0622 (17)0.0041 (13)0.0073 (14)0.0108 (12)
C240.0600 (19)0.068 (2)0.0687 (19)0.0135 (15)0.0139 (15)0.0213 (15)
C250.0514 (18)0.094 (2)0.0538 (17)0.0100 (17)0.0166 (14)0.0020 (16)
C260.0606 (18)0.0439 (16)0.0619 (16)0.0083 (13)0.0230 (14)0.0006 (12)
Geometric parameters (Å, º) top
Cl1—C51.740 (2)C7—H70.9300
Cl2—C181.736 (2)C8—C91.491 (3)
N1—C71.276 (3)C9—C101.376 (3)
N1—N21.369 (2)C9—C131.381 (3)
N2—C81.361 (3)C10—C111.375 (3)
N2—H20.892 (10)C10—H100.9300
N3—C121.332 (3)C11—C121.372 (3)
N3—C131.336 (3)C11—H110.9300
N4—C201.278 (3)C12—H120.9300
N4—N51.365 (2)C13—H130.9300
N5—C211.365 (3)C14—C151.396 (3)
N5—H50.891 (10)C14—C191.397 (3)
N6—C251.324 (3)C14—C201.456 (3)
N6—C261.342 (3)C15—C161.388 (3)
O1—C21.354 (3)C16—C171.371 (3)
O1—H10.8200C16—H160.9300
O2—C81.210 (2)C17—C181.378 (3)
O3—C151.361 (2)C17—H170.9300
O3—H30.8200C18—C191.373 (3)
O4—C211.223 (2)C19—H190.9300
C1—C61.394 (3)C20—H200.9300
C1—C21.405 (3)C21—C221.493 (3)
C1—C71.455 (3)C22—C261.372 (3)
C2—C31.387 (3)C22—C231.380 (3)
C3—C41.375 (3)C23—C241.372 (3)
C3—H3A0.9300C23—H230.9300
C4—C51.380 (3)C24—C251.369 (4)
C4—H40.9300C24—H240.9300
C5—C61.374 (3)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—N1—N2119.29 (19)N3—C12—C11123.3 (2)
C8—N2—N1116.92 (19)N3—C12—H12118.3
C8—N2—H2125.2 (17)C11—C12—H12118.3
N1—N2—H2116.2 (18)N3—C13—C9124.5 (2)
C12—N3—C13116.7 (2)N3—C13—H13117.7
C20—N4—N5120.75 (18)C9—C13—H13117.7
C21—N5—N4115.52 (18)C15—C14—C19118.6 (2)
C21—N5—H5127.1 (17)C15—C14—C20121.4 (2)
N4—N5—H5117.4 (17)C19—C14—C20120.05 (19)
C25—N6—C26115.5 (2)O3—C15—C16117.57 (19)
C2—O1—H1109.5O3—C15—C14122.55 (19)
C15—O3—H3109.5C16—C15—C14119.9 (2)
C6—C1—C2118.8 (2)C17—C16—C15120.7 (2)
C6—C1—C7119.2 (2)C17—C16—H16119.6
C2—C1—C7122.0 (2)C15—C16—H16119.6
O1—C2—C3117.5 (2)C16—C17—C18119.7 (2)
O1—C2—C1122.7 (2)C16—C17—H17120.2
C3—C2—C1119.8 (2)C18—C17—H17120.2
C4—C3—C2120.5 (2)C19—C18—C17120.6 (2)
C4—C3—H3A119.8C19—C18—Cl2120.18 (18)
C2—C3—H3A119.8C17—C18—Cl2119.23 (18)
C3—C4—C5119.9 (2)C18—C19—C14120.5 (2)
C3—C4—H4120.1C18—C19—H19119.7
C5—C4—H4120.1C14—C19—H19119.7
C6—C5—C4120.6 (2)N4—C20—C14118.06 (19)
C6—C5—Cl1120.01 (19)N4—C20—H20121.0
C4—C5—Cl1119.37 (19)C14—C20—H20121.0
C5—C6—C1120.4 (2)O4—C21—N5121.7 (2)
C5—C6—H6119.8O4—C21—C22121.3 (2)
C1—C6—H6119.8N5—C21—C22116.94 (19)
N1—C7—C1119.2 (2)C26—C22—C23116.9 (2)
N1—C7—H7120.4C26—C22—C21124.6 (2)
C1—C7—H7120.4C23—C22—C21118.4 (2)
O2—C8—N2121.6 (2)C24—C23—C22119.3 (2)
O2—C8—C9121.2 (2)C24—C23—H23120.4
N2—C8—C9117.3 (2)C22—C23—H23120.4
C10—C9—C13116.8 (2)C25—C24—C23118.8 (2)
C10—C9—C8117.9 (2)C25—C24—H24120.6
C13—C9—C8125.3 (2)C23—C24—H24120.6
C11—C10—C9120.0 (2)N6—C25—C24124.2 (3)
C11—C10—H10120.0N6—C25—H25117.9
C9—C10—H10120.0C24—C25—H25117.9
C12—C11—C10118.5 (2)N6—C26—C22125.3 (2)
C12—C11—H11120.8N6—C26—H26117.4
C10—C11—H11120.8C22—C26—H26117.4
C7—N1—N2—C8178.3 (2)C8—C9—C13—N3178.8 (2)
C20—N4—N5—C21177.7 (2)C19—C14—C15—O3178.9 (2)
C6—C1—C2—O1179.7 (2)C20—C14—C15—O32.0 (3)
C7—C1—C2—O10.3 (3)C19—C14—C15—C161.3 (3)
C6—C1—C2—C30.8 (3)C20—C14—C15—C16177.9 (2)
C7—C1—C2—C3179.2 (2)O3—C15—C16—C17179.9 (2)
O1—C2—C3—C4179.7 (2)C14—C15—C16—C170.1 (3)
C1—C2—C3—C40.7 (3)C15—C16—C17—C181.0 (4)
C2—C3—C4—C50.2 (4)C16—C17—C18—C190.8 (4)
C3—C4—C5—C61.0 (3)C16—C17—C18—Cl2178.62 (18)
C3—C4—C5—Cl1178.88 (18)C17—C18—C19—C140.5 (3)
C4—C5—C6—C11.0 (3)Cl2—C18—C19—C14179.87 (17)
Cl1—C5—C6—C1178.92 (16)C15—C14—C19—C181.5 (3)
C2—C1—C6—C50.1 (3)C20—C14—C19—C18177.7 (2)
C7—C1—C6—C5179.9 (2)N5—N4—C20—C14179.66 (18)
N2—N1—C7—C1179.88 (18)C15—C14—C20—N41.5 (3)
C6—C1—C7—N1176.7 (2)C19—C14—C20—N4177.7 (2)
C2—C1—C7—N13.3 (3)N4—N5—C21—O40.5 (3)
N1—N2—C8—O23.9 (3)N4—N5—C21—C22179.61 (18)
N1—N2—C8—C9176.60 (18)O4—C21—C22—C26178.9 (2)
O2—C8—C9—C105.6 (3)N5—C21—C22—C260.2 (3)
N2—C8—C9—C10173.9 (2)O4—C21—C22—C232.0 (3)
O2—C8—C9—C13174.2 (2)N5—C21—C22—C23178.9 (2)
N2—C8—C9—C136.3 (3)C26—C22—C23—C241.1 (4)
C13—C9—C10—C110.9 (3)C21—C22—C23—C24179.7 (2)
C8—C9—C10—C11178.9 (2)C22—C23—C24—C250.8 (4)
C9—C10—C11—C122.0 (4)C26—N6—C25—C240.2 (4)
C13—N3—C12—C111.3 (4)C23—C24—C25—N60.4 (4)
C10—C11—C12—N30.8 (4)C25—N6—C26—C220.6 (4)
C12—N3—C13—C92.5 (3)C23—C22—C26—N61.1 (4)
C10—C9—C13—N31.3 (3)C21—C22—C26—N6179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.594 (2)145
O3—H3···N40.821.822.538 (2)146
N5—H5···N3i0.89 (1)2.11 (1)2.991 (3)171 (2)
N2—H2···O30.89 (1)2.10 (1)2.984 (2)173 (2)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC13H10ClN3O2
Mr275.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.792 (2), 23.358 (3), 10.926 (2)
β (°) 96.848 (2)
V3)2481.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
14387, 5342, 3193
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.01
No. of reflections5342
No. of parameters351
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.594 (2)145.2
O3—H3···N40.821.822.538 (2)145.5
N5—H5···N3i0.891 (10)2.109 (11)2.991 (3)171 (2)
N2—H2···O30.892 (10)2.097 (10)2.984 (2)173 (2)
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The author acknowledges Zaozhuang University for funding this study.

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J.-C., Pan, Q.-X., Yin, H.-D. & Qiao, Y.-L. (2007). Acta Cryst. E63, o2633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Inorg. Chim. Acta, 358, 2437–2444.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, H.-L. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 165–166.  CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationJing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-C., Yin, H. & Lin, Y. (2007). Acta Cryst. E63, o2864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F. (2008). Acta Cryst. E64, o2032.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrabhakaran, R., Huang, R. & Natarajan, K. (2006). Inorg. Chim. Acta, 359, 3359–3362.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, X.-Y. (2009). Z. Kristallogr. New Cryst. Struct. 224, 109–110.  CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivakumar, K., Shashidhar, T., Reddy, P. V. & Halli, M. B. (2008). J. Coord. Chem. 61, 2274–2287.  Web of Science CrossRef CAS Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Cao, G.-B. & Yang, T. (2008). Acta Cryst. E64, o2022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1505-o1506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds