organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1525-o1526

Tris(2-meth­oxy­phen­yl)phosphine

aChemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 8 May 2009; accepted 30 May 2009; online 6 June 2009)

In the title compound, C21H21O3P, the whole mol­ecule is disordered over two sets of positions with refined occupancies of 0.503 (1) and 0.497 (1). The dihedral angles between the three benzene rings are 72.9 (2)°, 82.9 (3)° and 70.0 (2)° in the major disorder component and the corresponding angles in the minor disorder component are 85.0 (2)°, 79.2 (2)° and 72.3 (2)°. The crystal structure is stabilized by C—H⋯π inter­actions.

Related literature

For P–C bond lengths and C–P–C angles, see: Uttecht et al. (2005[Uttecht, J.-G., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, o2916-o2917.]). For the stereochemistry of tris­(2-methoxy­phen­yl) phosphine complexes and for P–C bond distances, see: Abbassioun et al. (1990[Abbassioun, M. S., Chaloner, P. A. & Hitchcock, P. B. (1990). Acta Cryst. C46, 902-904.]); Shawkataly et al. (1996[Shawkataly, O. bin, Saminathan, T., Muniswaran, K., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352-1355.]); Hirsivaara et al. (2000[Hirsivaara, L., Guerricabeitia, L., Haukka, M., Soumalainen, P., Laitinen, R. H., Pakkanen, T. A. & Pursiainen, J. (2000). Inorg. Chim. Acta. 307, 47-56.]); Barnes et al. (2006[Barnes, N. A., Godfrey, S. M., Halton, R. T. A., Mushtaq, I. & Pritchard, R. G. (2006). Dalton Trans. pp. 4795-4804.]); Bott et al. (2007[Bott, R. C., Healy, P. C. & Smith, G. (2007). Polyhedron, 26, 2803-2809.]); Romeo et al. (2006[Romeo, R., Carnabuci, S., Fenech, L., Plutino, M. R. & Albinati, A. (2006). Angew. Chem. Int. Edn. 45, 4494-4498.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21O3P

  • Mr = 352.35

  • Monoclinic, C 2/c

  • a = 29.5721 (4) Å

  • b = 8.2201 (1) Å

  • c = 14.9409 (2) Å

  • β = 96.381 (1)°

  • V = 3609.42 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 120 K

  • 0.47 × 0.37 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.862, Tmax = 0.983

  • 40913 measured reflections

  • 5318 independent reflections

  • 4128 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.163

  • S = 1.05

  • 5318 reflections

  • 413 parameters

  • 189 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21A—H21CCg1i 0.96 2.83 3.662 (3) 145
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{5\over 2}}, z]. Cg1 is the centroid of the C13A–C18A ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structure determination of the title compound was undertaken as part of a project to study the stereochemistry of substituted triphenylphosphine ligands (Abbassioun et al., 1990; Shawkataly et al., 1996; Hirsivaara et al., 2000; Barnes et al., 2006; Bott et al., 2007). Some of these interesting complexes have been synthesized using this tripodal ligand. Specially, its complex with platinum exhibits fluxionality and has been shown to behave as molecular gears (Romeo et al., 2006). The X-ray crystal structure of its thio analogue namely, tris[2-(methylsulfanyl)phenyl]phosphine, shows two independent molecules (Uttecht et al., 2005).

The whole molecule of title compound is disordered over two positions (Fig. 1 and 2) with refined occupancies of 0.503 (1) and 0.497 (1). The P—C bond lengths and C—P—C angles are comparable to a related structure (Uttecht et al., 2005). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angles between the benzene rings C1-C6 (A), C7-C12 (B) and C13-C18 (C) are: A/B 72.9 (2)°, A/C 82.9 (3)° and B/C 70.0 (2)° for the major disorder component, and A/B 85.0 (2)°, A/C 79.2 (2)° and B/C 72.3 (2)° for the minor disorder component.

In the crystal structure, a C18B···C19B(x,1+y,z) contact [3.112 (6) Å], shorter than the sum of the van der Waals radii is observed. The crystal structure (Fig. 3) is stabilized by C—H···π interactions (Table 1).

Related literature top

For P–C bond lengths and C–P–C angles, see: Uttecht et al. (2005). For the stereochemistry of tris(2-methoxyphenyl) phosphine complexes and for P–C bond distances, see: Abbassioun et al. (1990); Shawkataly et al. (1996); Hirsivaara et al. (2000); Barnes et al. (2006); Bott et al. (2007); Romeo et al. (2006). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).Cg1 is the centroid of the C13A-C18A ring.

Experimental top

The title compound was supplied by Strem Chemicals. Single crystals of were obtained by slow evaporation of an ethanol solution.

Refinement top

The whole molecule is disordered over positions, with occupancies of 0.503 (1) and 0.497 (1). The same Uij parameters were used for atom pairs C17A/C17B, C5A/C19B, C2A/C20A and C21B/C21A, and all disordered atoms were subjected to a rigid bond restraint. All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93–0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms. Both disorder components are shown.
[Figure 2] Fig. 2. The major disorder component of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. The crystal packing of the title compound, showing molecular stacking down the b axis. Only the major disorder component is shown.
Tris(2-methoxyphenyl)phosphine top
Crystal data top
C21H21O3PF(000) = 1488
Mr = 352.35Dx = 1.297 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9954 reflections
a = 29.5721 (4) Åθ = 1.4–30.1°
b = 8.2201 (1) ŵ = 0.17 mm1
c = 14.9409 (2) ÅT = 120 K
β = 96.381 (1)°Block, colourless
V = 3609.42 (8) Å30.47 × 0.37 × 0.11 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5318 independent reflections
Radiation source: fine-focus sealed tube4128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 30.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4141
Tmin = 0.862, Tmax = 0.983k = 1111
40913 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0605P)2 + 3.6006P]
where P = (Fo2 + 2Fc2)/3
5318 reflections(Δ/σ)max = 0.001
413 parametersΔρmax = 0.44 e Å3
189 restraintsΔρmin = 0.50 e Å3
Crystal data top
C21H21O3PV = 3609.42 (8) Å3
Mr = 352.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.5721 (4) ŵ = 0.17 mm1
b = 8.2201 (1) ÅT = 120 K
c = 14.9409 (2) Å0.47 × 0.37 × 0.11 mm
β = 96.381 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4128 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.983Rint = 0.032
40913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064189 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
5318 reflectionsΔρmin = 0.50 e Å3
413 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P1A0.11821 (2)0.85263 (9)0.07264 (5)0.0284 (2)0.5033 (10)
O1A0.0996 (2)0.6755 (7)0.0927 (3)0.0445 (10)0.5033 (10)
O2A0.21408 (13)0.8979 (6)0.1073 (3)0.0635 (12)0.5033 (10)
O3A0.05865 (9)1.1130 (3)0.1131 (2)0.0508 (7)0.5033 (10)
C1A0.13426 (11)0.6409 (4)0.0532 (2)0.0284 (7)0.5033 (10)
C2A0.12437 (10)0.5761 (4)0.0329 (2)0.0410 (6)0.5033 (10)
C3A0.13987 (15)0.4212 (7)0.0534 (3)0.0396 (16)0.5033 (10)
H3A0.13400.38060.11170.048*0.5033 (10)
C4A0.16347 (14)0.3302 (5)0.0115 (3)0.0595 (11)0.5033 (10)
H4A0.17400.22780.00280.071*0.5033 (10)
C5A0.1721 (3)0.3871 (7)0.0983 (5)0.0896 (14)0.5033 (10)
H5A0.18690.32130.14300.108*0.5033 (10)
C6A0.15860 (11)0.5437 (4)0.1188 (2)0.0382 (7)0.5033 (10)
H6A0.16580.58430.17670.046*0.5033 (10)
C7A0.14947 (10)0.8925 (3)0.18335 (19)0.0328 (6)0.5033 (10)
C8A0.19597 (13)0.9198 (5)0.1871 (3)0.0487 (9)0.5033 (10)
C9A0.2214 (2)0.9672 (7)0.2657 (5)0.0696 (17)0.5033 (10)
H9A0.25250.98450.26660.083*0.5033 (10)
C10A0.2007 (2)0.9887 (5)0.3428 (4)0.0812 (17)0.5033 (10)
H10A0.21791.02080.39580.097*0.5033 (10)
C11A0.1542 (2)0.9627 (5)0.3423 (3)0.0670 (14)0.5033 (10)
H11A0.14010.97740.39440.080*0.5033 (10)
C12A0.12902 (13)0.9143 (4)0.2622 (2)0.0424 (7)0.5033 (10)
H12A0.09790.89620.26130.051*0.5033 (10)
C13A0.05989 (10)0.8286 (4)0.1004 (2)0.0368 (7)0.5033 (10)
C14A0.03431 (14)0.9685 (5)0.1150 (3)0.0478 (10)0.5033 (10)
C15A0.01091 (16)0.9581 (8)0.1305 (5)0.0642 (16)0.5033 (10)
H15A0.02701.05150.14210.077*0.5033 (10)
C16A0.03183 (13)0.8085 (6)0.1288 (4)0.0763 (15)0.5033 (10)
H16A0.06270.80520.13590.092*0.5033 (10)
C17A0.00931 (19)0.6586 (7)0.1167 (6)0.0678 (11)0.5033 (10)
H17A0.02310.55740.11980.081*0.5033 (10)
C18A0.03710 (13)0.6805 (5)0.0990 (3)0.0491 (10)0.5033 (10)
H18A0.05320.58810.08550.059*0.5033 (10)
C19A0.09955 (16)0.6406 (6)0.1872 (3)0.0579 (10)0.5033 (10)
H19A0.08640.73050.22200.087*0.5033 (10)
H19B0.08200.54420.20210.087*0.5033 (10)
H19C0.13020.62390.20060.087*0.5033 (10)
C20A0.25882 (15)0.9331 (7)0.1125 (3)0.0410 (6)0.5033 (10)
H20A0.27020.90510.05670.061*0.5033 (10)
H20B0.27490.87190.16070.061*0.5033 (10)
H20C0.26321.04730.12380.061*0.5033 (10)
C21A0.03439 (3)1.25999 (10)0.11792 (5)0.0859 (15)0.5033 (10)
H21A0.05491.35020.11610.129*0.5033 (10)
H21B0.02061.26310.17310.129*0.5033 (10)
H21C0.01111.26670.06780.129*0.5033 (10)
P1B0.12322 (2)0.74119 (9)0.15377 (5)0.0330 (2)0.4967 (10)
O1B0.16399 (2)0.44061 (9)0.10141 (7)0.0576 (9)0.4967 (10)
O2B0.16390 (2)0.92945 (9)0.30307 (6)0.0431 (6)0.4967 (10)
O3B0.02690 (3)0.71548 (10)0.13196 (9)0.0623 (10)0.4967 (10)
C1B0.11971 (6)0.65852 (15)0.03978 (5)0.0317 (9)0.4967 (10)
C2B0.14037 (6)0.50871 (15)0.02601 (5)0.0404 (7)0.4967 (10)
C3B0.13712 (6)0.43983 (16)0.05953 (5)0.049 (2)0.4967 (10)
H3B0.14950.33730.06690.059*0.4967 (10)
C4B0.11634 (11)0.5190 (5)0.1325 (3)0.0502 (9)0.4967 (10)
H4B0.11600.47360.18960.060*0.4967 (10)
C5B0.0956 (3)0.6672 (12)0.1218 (4)0.0458 (14)0.4967 (10)
H5B0.08060.72070.17120.055*0.4967 (10)
C6B0.09754 (11)0.7356 (5)0.0366 (2)0.0398 (7)0.4967 (10)
H6B0.08370.83570.03000.048*0.4967 (10)
C7B0.17805 (10)0.8463 (4)0.15924 (19)0.0283 (5)0.4967 (10)
C8B0.19367 (11)0.9314 (4)0.2379 (2)0.0318 (6)0.4967 (10)
C9B0.23494 (15)1.0121 (6)0.2487 (3)0.0418 (10)0.4967 (10)
H9B0.24421.06930.30120.050*0.4967 (10)
C10B0.26237 (11)1.0052 (5)0.1782 (3)0.0456 (8)0.4967 (10)
H10B0.29071.05590.18540.055*0.4967 (10)
C11B0.2480 (2)0.9209 (8)0.0934 (3)0.0656 (17)0.4967 (10)
H11B0.26520.92080.04500.079*0.4967 (10)
C12B0.20682 (16)0.8418 (5)0.0913 (3)0.0316 (8)0.4967 (10)
H12B0.19740.78040.04040.038*0.4967 (10)
C13B0.08356 (10)0.9123 (4)0.1363 (2)0.0348 (6)0.4967 (10)
C14B0.03738 (12)0.8789 (6)0.1299 (3)0.0453 (9)0.4967 (10)
C15B0.00492 (17)1.0010 (8)0.1214 (5)0.0577 (13)0.4967 (10)
H15B0.02580.97510.11880.069*0.4967 (10)
C16B0.01844 (14)1.1617 (6)0.1170 (3)0.0656 (12)0.4967 (10)
H16B0.00321.24410.10980.079*0.4967 (10)
C17B0.06457 (16)1.1998 (7)0.1235 (4)0.0678 (11)0.4967 (10)
H17B0.07411.30750.12190.081*0.4967 (10)
C18B0.09617 (11)1.0742 (4)0.1323 (3)0.0440 (8)0.4967 (10)
H18B0.12691.09980.13560.053*0.4967 (10)
C19B0.1803 (2)0.2818 (5)0.0964 (4)0.0896 (14)0.4967 (10)
H19D0.19030.24300.15600.134*0.4967 (10)
H19E0.20550.28060.06090.134*0.4967 (10)
H19F0.15650.21280.06900.134*0.4967 (10)
C20B0.17636 (17)1.0245 (6)0.3812 (3)0.0588 (11)0.4967 (10)
H20D0.15241.02120.41950.088*0.4967 (10)
H20E0.18141.13500.36390.088*0.4967 (10)
H20F0.20380.98170.41300.088*0.4967 (10)
C21B0.0196 (2)0.6854 (9)0.1278 (7)0.0859 (15)0.4967 (10)
H21D0.02450.57210.13890.129*0.4967 (10)
H21E0.03400.71390.06920.129*0.4967 (10)
H21F0.03230.74940.17260.129*0.4967 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P1A0.0297 (4)0.0262 (3)0.0281 (4)0.0024 (3)0.0023 (3)0.0026 (3)
O1A0.0543 (19)0.0487 (17)0.027 (2)0.0000 (13)0.0113 (18)0.0048 (19)
O2A0.0242 (14)0.087 (3)0.078 (3)0.0219 (18)0.0018 (14)0.006 (2)
O3A0.0461 (14)0.0345 (13)0.0688 (18)0.0072 (11)0.0076 (12)0.0080 (13)
C1A0.0191 (17)0.0299 (15)0.0361 (15)0.0035 (12)0.0023 (12)0.0003 (12)
C2A0.0290 (11)0.0477 (14)0.0449 (15)0.0056 (10)0.0015 (10)0.0047 (12)
C3A0.027 (3)0.036 (2)0.056 (3)0.003 (2)0.005 (3)0.017 (2)
C4A0.056 (2)0.0375 (19)0.082 (3)0.0108 (16)0.007 (2)0.0184 (18)
C5A0.116 (3)0.0338 (17)0.107 (3)0.0211 (19)0.043 (2)0.0097 (19)
C6A0.0366 (15)0.0336 (16)0.0415 (17)0.0010 (13)0.0092 (12)0.0011 (13)
C7A0.0393 (15)0.0248 (13)0.0319 (14)0.0029 (11)0.0060 (11)0.0028 (11)
C8A0.046 (2)0.042 (2)0.053 (2)0.0104 (16)0.0172 (18)0.002 (2)
C9A0.067 (4)0.049 (3)0.082 (4)0.015 (2)0.041 (3)0.004 (3)
C10A0.130 (4)0.042 (2)0.058 (3)0.005 (3)0.053 (3)0.008 (2)
C11A0.132 (4)0.0335 (19)0.031 (2)0.011 (2)0.012 (2)0.0032 (16)
C12A0.066 (2)0.0300 (15)0.0304 (15)0.0059 (15)0.0016 (14)0.0025 (12)
C13A0.0255 (13)0.0363 (16)0.0472 (17)0.0038 (12)0.0016 (13)0.0010 (13)
C14A0.036 (2)0.041 (2)0.063 (2)0.0114 (17)0.0115 (16)0.0106 (19)
C15A0.033 (3)0.065 (3)0.093 (4)0.014 (2)0.001 (3)0.029 (3)
C16A0.0260 (16)0.079 (3)0.125 (4)0.0004 (18)0.012 (2)0.023 (3)
C17A0.0469 (18)0.0447 (19)0.112 (3)0.0060 (14)0.0080 (18)0.012 (2)
C18A0.0349 (18)0.042 (2)0.072 (3)0.0057 (15)0.0116 (17)0.0071 (19)
C19A0.075 (3)0.066 (3)0.0310 (18)0.014 (2)0.0030 (17)0.0049 (17)
C20A0.0290 (11)0.0477 (14)0.0449 (15)0.0056 (10)0.0015 (10)0.0047 (12)
C21A0.054 (2)0.050 (2)0.152 (4)0.0102 (16)0.004 (2)0.025 (2)
P1B0.0320 (4)0.0339 (4)0.0334 (4)0.0019 (3)0.0054 (3)0.0063 (3)
O1B0.072 (2)0.0230 (16)0.0701 (19)0.0038 (14)0.0264 (16)0.0008 (15)
O2B0.0494 (14)0.0543 (16)0.0261 (12)0.0026 (12)0.0058 (11)0.0029 (11)
O3B0.0374 (15)0.0579 (19)0.097 (3)0.0119 (13)0.0295 (15)0.0223 (18)
C1B0.0204 (19)0.0321 (17)0.0430 (19)0.0036 (13)0.0049 (14)0.0003 (14)
C2B0.0299 (14)0.0284 (15)0.061 (2)0.0059 (12)0.0030 (14)0.0048 (14)
C3B0.031 (4)0.044 (4)0.070 (4)0.005 (3)0.000 (3)0.019 (3)
C4B0.0298 (15)0.069 (2)0.054 (2)0.0125 (15)0.0124 (14)0.0253 (19)
C5B0.037 (2)0.065 (3)0.033 (3)0.003 (2)0.004 (2)0.008 (3)
C6B0.0355 (15)0.0464 (19)0.0373 (17)0.0073 (14)0.0034 (13)0.0022 (15)
C7B0.0272 (13)0.0298 (14)0.0267 (13)0.0029 (12)0.0021 (11)0.0033 (11)
C8B0.0336 (16)0.0348 (16)0.0257 (14)0.0069 (13)0.0026 (13)0.0011 (13)
C9B0.038 (2)0.046 (3)0.039 (2)0.0000 (17)0.0068 (15)0.0147 (19)
C10B0.0288 (14)0.052 (2)0.055 (2)0.0071 (14)0.0022 (13)0.0116 (17)
C11B0.065 (3)0.080 (3)0.042 (2)0.003 (3)0.036 (2)0.022 (2)
C12B0.032 (2)0.0327 (19)0.0288 (16)0.0021 (15)0.0001 (13)0.0029 (13)
C13B0.0293 (13)0.0415 (16)0.0347 (15)0.0021 (12)0.0076 (11)0.0003 (13)
C14B0.0299 (17)0.053 (2)0.055 (2)0.0015 (17)0.0109 (15)0.015 (2)
C15B0.027 (2)0.075 (3)0.074 (3)0.008 (2)0.014 (2)0.014 (3)
C16B0.045 (2)0.075 (3)0.076 (3)0.025 (2)0.006 (2)0.003 (2)
C17B0.0469 (18)0.0447 (19)0.112 (3)0.0060 (14)0.0080 (18)0.012 (2)
C18B0.0347 (15)0.0408 (17)0.056 (2)0.0024 (13)0.0034 (14)0.0090 (15)
C19B0.116 (3)0.0338 (17)0.107 (3)0.0211 (19)0.043 (2)0.0097 (19)
C20B0.073 (3)0.067 (3)0.038 (2)0.004 (2)0.0107 (19)0.013 (2)
C21B0.054 (2)0.050 (2)0.152 (4)0.0102 (16)0.004 (2)0.025 (2)
Geometric parameters (Å, º) top
P1A—C1A1.836 (4)P1B—C1B1.8258
P1A—C7A1.833 (3)P1B—C7B1.831 (3)
P1A—C13A1.829 (3)P1B—C13B1.831 (3)
O1A—C2A1.362 (6)O1B—C2B1.3767
O1A—C19A1.440 (4)O1B—C19B1.397 (4)
O2A—C20A1.348 (5)O2B—C8B1.383 (3)
O2A—C8A1.373 (6)O2B—C20B1.419 (4)
O3A—C14A1.392 (5)O3B—C14B1.379 (5)
O3A—C21A1.411 (3)O3B—C21B1.390 (6)
C1A—C2A1.393 (5)C1B—C2B1.400
C1A—C6A1.400 (5)C1B—C6B1.403 (3)
C2A—C3A1.399 (6)C2B—C3B1.3914
C3A—C4A1.356 (7)C3B—C4B1.357 (5)
C3A—H3A0.93C3B—H3B0.93
C4A—C5A1.375 (8)C4B—C5B1.381 (9)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.392 (6)C5B—C6B1.386 (6)
C5A—H5A0.93C5B—H5B0.93
C6A—H6A0.93C6B—H6B0.93
C7A—C8A1.388 (5)C7B—C12B1.395 (5)
C7A—C12A1.394 (4)C7B—C8B1.402 (4)
C8A—C9A1.379 (7)C8B—C9B1.383 (5)
C9A—C10A1.375 (9)C9B—C10B1.400 (6)
C9A—H9A0.93C9B—H9B0.93
C10A—C11A1.390 (8)C10B—C11B1.465 (5)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.396 (5)C11B—C12B1.377 (7)
C11A—H11A0.93C11B—H11B0.93
C12A—H12A0.93C12B—H12B0.93
C13A—C18A1.391 (5)C13B—C18B1.386 (5)
C13A—C14A1.406 (5)C13B—C14B1.386 (4)
C14A—C15A1.385 (6)C14B—C15B1.385 (7)
C15A—C16A1.375 (7)C15B—C16B1.385 (8)
C15A—H15A0.93C15B—H15B0.93
C16A—C17A1.421 (6)C16B—C17B1.392 (6)
C16A—H16A0.93C16B—H16B0.93
C17A—C18A1.437 (6)C17B—C18B1.389 (6)
C17A—H17A0.93C17B—H17B0.93
C18A—H18A0.93C18B—H18B0.93
C19A—H19A0.96C19B—H19D0.96
C19A—H19B0.96C19B—H19E0.96
C19A—H19C0.96C19B—H19F0.96
C20A—H20A0.96C20B—H20D0.96
C20A—H20B0.96C20B—H20E0.96
C20A—H20C0.96C20B—H20F0.96
C21A—H21A0.96C21B—H21D0.96
C21A—H21B0.96C21B—H21E0.96
C21A—H21C0.96C21B—H21F0.96
C7A—P1A—C1A101.47 (14)O1B—C2B—C3B124.3
C13A—P1A—C1A101.57 (15)O1B—C2B—C1B115.3
C13A—P1A—C7A102.02 (15)C3B—C2B—C1B120.4
C2A—O1A—C19A117.8 (5)C4B—C3B—C2B121.44 (16)
C20A—O2A—C8A113.4 (4)C4B—C3B—H3B119.3
C14A—O3A—C21A117.6 (3)C2B—C3B—H3B119.3
C2A—C1A—C6A117.8 (3)C3B—C4B—C5B119.8 (3)
C2A—C1A—P1A118.5 (3)C3B—C4B—H4B120.1
C6A—C1A—P1A123.5 (3)C5B—C4B—H4B120.1
O1A—C2A—C1A114.8 (3)C4B—C5B—C6B119.4 (5)
O1A—C2A—C3A124.5 (4)C4B—C5B—H5B120.3
C1A—C2A—C3A120.7 (4)C6B—C5B—H5B120.3
C4A—C3A—C2A120.0 (4)C5B—C6B—C1B122.1 (4)
C4A—C3A—H3A120.0C5B—C6B—H6B118.9
C2A—C3A—H3A120.0C1B—C6B—H6B118.9
C3A—C4A—C5A120.9 (4)C12B—C7B—C8B116.9 (3)
C3A—C4A—H4A119.5C12B—C7B—P1B124.3 (3)
C5A—C4A—H4A119.5C8B—C7B—P1B118.7 (2)
C4A—C5A—C6A119.6 (5)C9B—C8B—O2B123.1 (3)
C4A—C5A—H5A120.2C9B—C8B—C7B122.8 (3)
C6A—C5A—H5A120.2O2B—C8B—C7B114.1 (3)
C5A—C6A—C1A120.8 (4)C8B—C9B—C10B118.1 (4)
C5A—C6A—H6A119.6C8B—C9B—H9B121.0
C1A—C6A—H6A119.6C10B—C9B—H9B121.0
C8A—C7A—C12A117.8 (3)C9B—C10B—C11B122.2 (4)
C8A—C7A—P1A117.6 (3)C9B—C10B—H10B118.9
C12A—C7A—P1A124.2 (3)C11B—C10B—H10B118.9
O2A—C8A—C9A123.3 (5)C12B—C11B—C10B114.4 (5)
O2A—C8A—C7A115.1 (4)C12B—C11B—H11B122.8
C9A—C8A—C7A121.6 (5)C10B—C11B—H11B122.8
C10A—C9A—C8A119.9 (6)C11B—C12B—C7B125.5 (4)
C10A—C9A—H9A120.1C11B—C12B—H12B117.3
C8A—C9A—H9A120.1C7B—C12B—H12B117.3
C9A—C10A—C11A120.5 (4)C18B—C13B—C14B117.1 (3)
C9A—C10A—H10A119.7C18B—C13B—P1B124.9 (2)
C11A—C10A—H10A119.7C14B—C13B—P1B117.9 (3)
C10A—C11A—C12A118.8 (5)O3B—C14B—C15B123.5 (3)
C10A—C11A—H11A120.6O3B—C14B—C13B114.4 (3)
C12A—C11A—H11A120.6C15B—C14B—C13B122.0 (4)
C7A—C12A—C11A121.4 (4)C16B—C15B—C14B119.7 (4)
C7A—C12A—H12A119.3C16B—C15B—H15B120.2
C11A—C12A—H12A119.3C14B—C15B—H15B120.2
C18A—C13A—C14A116.7 (3)C15B—C16B—C17B119.8 (4)
C18A—C13A—P1A124.0 (3)C15B—C16B—H16B120.1
C14A—C13A—P1A119.0 (3)C17B—C16B—H16B120.1
C15A—C14A—O3A124.6 (4)C18B—C17B—C16B118.9 (5)
C15A—C14A—C13A121.4 (4)C18B—C17B—H17B120.5
O3A—C14A—C13A114.0 (3)C16B—C17B—H17B120.5
C16A—C15A—C14A119.5 (5)C13B—C18B—C17B122.5 (4)
C16A—C15A—H15A120.3C13B—C18B—H18B118.8
C14A—C15A—H15A120.3C17B—C18B—H18B118.8
C15A—C16A—C17A124.1 (4)O1B—C19B—H19D109.5
C15A—C16A—H16A117.9O1B—C19B—H19E109.5
C17A—C16A—H16A117.9H19D—C19B—H19E109.5
C16A—C17A—C18A112.7 (5)O1B—C19B—H19F109.5
C16A—C17A—H17A123.7H19D—C19B—H19F109.5
C18A—C17A—H17A123.7H19E—C19B—H19F109.5
C13A—C18A—C17A125.3 (4)O2B—C20B—H20D109.5
C13A—C18A—H18A117.4O2B—C20B—H20E109.5
C17A—C18A—H18A117.4H20D—C20B—H20E109.5
C1B—P1B—C7B100.11 (12)O2B—C20B—H20F109.5
C1B—P1B—C13B100.60 (10)H20D—C20B—H20F109.5
C7B—P1B—C13B101.19 (14)H20E—C20B—H20F109.5
C2B—O1B—C19B118.9 (2)O3B—C21B—H21D109.5
C8B—O2B—C20B116.4 (3)O3B—C21B—H21E109.5
C14B—O3B—C21B113.3 (3)H21D—C21B—H21E109.5
C2B—C1B—C6B116.71 (16)O3B—C21B—H21F109.5
C2B—C1B—P1B118.9H21D—C21B—H21F109.5
C6B—C1B—P1B124.34 (16)H21E—C21B—H21F109.5
C13A—P1A—C1A—C2A87.8 (3)C7B—P1B—C1B—C2B85.86 (10)
C7A—P1A—C1A—C2A167.3 (3)C13B—P1B—C1B—C2B170.61 (10)
C13A—P1A—C1A—C6A96.6 (3)C7B—P1B—C1B—C6B93.9 (2)
C7A—P1A—C1A—C6A8.4 (3)C13B—P1B—C1B—C6B9.6 (3)
C19A—O1A—C2A—C1A161.8 (4)C19B—O1B—C2B—C3B9.9 (3)
C19A—O1A—C2A—C3A17.4 (7)C19B—O1B—C2B—C1B171.4 (3)
C6A—C1A—C2A—O1A178.4 (4)C6B—C1B—C2B—O1B176.5 (2)
P1A—C1A—C2A—O1A5.7 (5)P1B—C1B—C2B—O1B3.3
C6A—C1A—C2A—C3A2.3 (5)C6B—C1B—C2B—C3B2.20 (18)
P1A—C1A—C2A—C3A173.6 (3)P1B—C1B—C2B—C3B177.99 (8)
O1A—C2A—C3A—C4A178.6 (5)O1B—C2B—C3B—C4B174.7 (2)
C1A—C2A—C3A—C4A2.2 (6)C1B—C2B—C3B—C4B3.85 (19)
C2A—C3A—C4A—C5A0.7 (8)C2B—C3B—C4B—C5B3.6 (6)
C3A—C4A—C5A—C6A3.5 (10)C3B—C4B—C5B—C6B1.9 (10)
C4A—C5A—C6A—C1A3.3 (9)C4B—C5B—C6B—C1B0.3 (10)
C2A—C1A—C6A—C5A0.4 (6)C2B—C1B—C6B—C5B0.5 (6)
P1A—C1A—C6A—C5A176.1 (5)P1B—C1B—C6B—C5B179.7 (5)
C13A—P1A—C7A—C8A179.0 (3)C1B—P1B—C7B—C12B4.2 (3)
C1A—P1A—C7A—C8A76.4 (3)C13B—P1B—C7B—C12B107.2 (3)
C13A—P1A—C7A—C12A6.2 (3)C1B—P1B—C7B—C8B178.8 (2)
C1A—P1A—C7A—C12A110.8 (3)C13B—P1B—C7B—C8B75.8 (3)
C20A—O2A—C8A—C9A2.4 (7)C20B—O2B—C8B—C9B4.0 (5)
C20A—O2A—C8A—C7A177.0 (4)C20B—O2B—C8B—C7B175.1 (3)
C12A—C7A—C8A—O2A179.4 (3)C12B—C7B—C8B—C9B1.7 (5)
P1A—C7A—C8A—O2A6.1 (5)P1B—C7B—C8B—C9B178.9 (3)
C12A—C7A—C8A—C9A0.1 (6)C12B—C7B—C8B—O2B179.2 (3)
P1A—C7A—C8A—C9A173.3 (4)P1B—C7B—C8B—O2B2.0 (3)
O2A—C8A—C9A—C10A179.2 (5)O2B—C8B—C9B—C10B179.8 (3)
C7A—C8A—C9A—C10A0.1 (8)C7B—C8B—C9B—C10B1.2 (6)
C8A—C9A—C10A—C11A0.1 (8)C8B—C9B—C10B—C11B2.2 (7)
C9A—C10A—C11A—C12A0.1 (7)C9B—C10B—C11B—C12B3.7 (8)
C8A—C7A—C12A—C11A0.3 (5)C10B—C11B—C12B—C7B4.4 (8)
P1A—C7A—C12A—C11A172.5 (3)C8B—C7B—C12B—C11B3.6 (6)
C10A—C11A—C12A—C7A0.3 (6)P1B—C7B—C12B—C11B179.4 (4)
C7A—P1A—C13A—C18A107.9 (3)C1B—P1B—C13B—C18B104.3 (3)
C1A—P1A—C13A—C18A3.4 (4)C7B—P1B—C13B—C18B1.7 (3)
C7A—P1A—C13A—C14A79.2 (3)C1B—P1B—C13B—C14B78.1 (3)
C1A—P1A—C13A—C14A176.3 (3)C7B—P1B—C13B—C14B179.2 (3)
C21A—O3A—C14A—C15A6.9 (7)C21B—O3B—C14B—C15B2.0 (7)
C21A—O3A—C14A—C13A173.7 (3)C21B—O3B—C14B—C13B178.4 (5)
C18A—C13A—C14A—C15A2.3 (7)C18B—C13B—C14B—O3B178.4 (3)
P1A—C13A—C14A—C15A175.8 (5)P1B—C13B—C14B—O3B3.9 (4)
C18A—C13A—C14A—O3A178.2 (4)C18B—C13B—C14B—C15B1.2 (6)
P1A—C13A—C14A—O3A4.8 (5)P1B—C13B—C14B—C15B176.5 (4)
O3A—C14A—C15A—C16A178.4 (5)O3B—C14B—C15B—C16B177.9 (5)
C13A—C14A—C15A—C16A2.2 (9)C13B—C14B—C15B—C16B1.6 (8)
C14A—C15A—C16A—C17A3.6 (11)C14B—C15B—C16B—C17B1.7 (9)
C15A—C16A—C17A—C18A4.8 (10)C15B—C16B—C17B—C18B1.4 (8)
C14A—C13A—C18A—C17A4.1 (7)C14B—C13B—C18B—C17B0.9 (6)
P1A—C13A—C18A—C17A177.1 (5)P1B—C13B—C18B—C17B176.7 (4)
C16A—C17A—C18A—C13A5.1 (9)C16B—C17B—C18B—C13B1.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21A—H21C···Cg1i0.962.833.662 (3)145
Symmetry code: (i) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC21H21O3P
Mr352.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)29.5721 (4), 8.2201 (1), 14.9409 (2)
β (°) 96.381 (1)
V3)3609.42 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.47 × 0.37 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.862, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
40913, 5318, 4128
Rint0.032
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.163, 1.05
No. of reflections5318
No. of parameters413
No. of restraints189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.50

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21A—H21C···Cg1i0.962.833.662 (3)145
Symmetry code: (i) x+1/2, y+5/2, z.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research grant No. 1001/PJJAUH/811115. HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312.

References

First citationAbbassioun, M. S., Chaloner, P. A. & Hitchcock, P. B. (1990). Acta Cryst. C46, 902–904.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBarnes, N. A., Godfrey, S. M., Halton, R. T. A., Mushtaq, I. & Pritchard, R. G. (2006). Dalton Trans. pp. 4795–4804.  Web of Science CSD CrossRef Google Scholar
First citationBott, R. C., Healy, P. C. & Smith, G. (2007). Polyhedron, 26, 2803–2809.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHirsivaara, L., Guerricabeitia, L., Haukka, M., Soumalainen, P., Laitinen, R. H., Pakkanen, T. A. & Pursiainen, J. (2000). Inorg. Chim. Acta. 307, 47–56.  CrossRef CAS Google Scholar
First citationRomeo, R., Carnabuci, S., Fenech, L., Plutino, M. R. & Albinati, A. (2006). Angew. Chem. Int. Edn. 45, 4494–4498.  Web of Science CSD CrossRef CAS Google Scholar
First citationShawkataly, O. bin, Saminathan, T., Muniswaran, K., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352–1355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUttecht, J.-G., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, o2916–o2917.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1525-o1526
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds