organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-2,2,2-tri­methyl­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 May 2009; accepted 4 June 2009; online 10 June 2009)

The N—H bond in the title compound, C13H19NO, is anti to the C=O bond and is also anti to both the 2- and 3-methyl substituents in the aromatic ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the c axis.

Related literature

For the preparation of the title compound, see: Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]). For related structures, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3788.],b[Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o1983-o1984.],c[Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, o2073-o2074.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO

  • Mr = 205.29

  • Monoclinic, P 21 /c

  • a = 18.276 (4) Å

  • b = 8.227 (2) Å

  • c = 8.633 (2) Å

  • β = 97.94 (2)°

  • V = 1285.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 299 K

  • 0.45 × 0.16 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.971, Tmax = 0.992

  • 4295 measured reflections

  • 2349 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.221

  • S = 0.96

  • 2349 reflections

  • 195 parameters

  • 112 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.94 2.11 2.966 (3) 151
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the crystal structures of chemically and biologically important class of compounds such as aromatic amides (Gowda et al., 2007a, b, c), the crystal structure of 2,2,2-trimethyl-N-(2,3-dimethylphenyl)-acetamide has been determined.

The conformation of the N–H bond in the title compound is anti to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), in contrast to the syn conformation observed with respect to both the 2- and 3-chloro substituents in 2,2,2-trimethyl-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2007a), syn conformation with respect to the 2-methyl substituent in 2,2,2-trimethyl-N- (2-methylphenyl)acetamide (Gowda et al., 2007b) and anti conformation with respect to 3-methyl substituent in 2,2,2-trimethyl-N- (3-methylphenyl)acetamide (Gowda et al., 2007c). Furthermore, the conformation of the CO bond is anti to the N—H bond in the amide segment.

In the title compound, the molecules are linked into chains (Fig. 2) running along the c axis by intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For the preparation of the title compound, see: Shilpa & Gowda (2007). For related structures, see: Gowda et al. (2007a,b,c).

Experimental top

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were grown by slow evaporation of its ethanolic solution at room temperature.

Refinement top

The tert-butyl group is disordered over three orientations with occupancies of 0.743 (14), 0.153 (7) and 0.104 (13). All C—C/C···C distances involving disordered atoms were restrained to be equal and also they were subjected to a rigid bond restraint. The Uij components of the disordered atoms were restrained to approximate isotropic behaviour. The N-bound H atom was located in a difference map and was allowed to ride on the N atom. The remaining H atoms were positioned geometrically and refined using a riding model [C-H = 0.93–0.96 Å]. The Uiso parameter for all H atoms were set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed down the b axis. Only the major disorder component is shown. Hydrogen bonds are shown as dashed lines.
N-(2,3-Dimethylphenyl)-2,2,2-trimethylacetamide top
Crystal data top
C13H19NOF(000) = 448
Mr = 205.29Dx = 1.061 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1033 reflections
a = 18.276 (4) Åθ = 2.7–27.9°
b = 8.227 (2) ŵ = 0.07 mm1
c = 8.633 (2) ÅT = 299 K
β = 97.94 (2)°Needle, colourless
V = 1285.6 (5) Å30.45 × 0.16 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2349 independent reflections
Radiation source: fine-focus sealed tube1214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1721
Tmin = 0.971, Tmax = 0.992k = 69
4295 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1311P)2]
where P = (Fo2 + 2Fc2)/3
2349 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.28 e Å3
112 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H19NOV = 1285.6 (5) Å3
Mr = 205.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.276 (4) ŵ = 0.07 mm1
b = 8.227 (2) ÅT = 299 K
c = 8.633 (2) Å0.45 × 0.16 × 0.08 mm
β = 97.94 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2349 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1214 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.992Rint = 0.047
4295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.073112 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 0.96Δρmax = 0.28 e Å3
2349 reflectionsΔρmin = 0.24 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.19392 (11)0.0929 (2)0.5063 (2)0.0698 (7)
N10.23113 (12)0.2060 (3)0.2915 (2)0.0563 (7)
H1N0.22390.23560.18500.068*
C10.28809 (14)0.3034 (3)0.3784 (3)0.0502 (7)
C20.34834 (14)0.2312 (3)0.4711 (3)0.0519 (7)
C30.40102 (15)0.3326 (4)0.5567 (3)0.0618 (8)
C40.39304 (17)0.4983 (4)0.5429 (3)0.0733 (9)
H40.42780.56520.60020.088*
C50.33513 (19)0.5685 (4)0.4467 (4)0.0789 (10)
H50.33200.68090.43690.095*
C60.28169 (17)0.4699 (3)0.3649 (3)0.0652 (8)
H60.24180.51570.30120.078*
C70.18685 (15)0.1087 (3)0.3635 (3)0.0533 (7)
C80.12776 (15)0.0097 (3)0.2593 (3)0.0636 (8)
C90.1112 (4)0.0650 (10)0.0899 (5)0.086 (2)0.743 (14)
H9A0.08650.16820.08530.128*0.743 (14)
H9B0.08010.01360.03090.128*0.743 (14)
H9C0.15660.07520.04650.128*0.743 (14)
C100.0569 (3)0.0106 (12)0.3340 (8)0.100 (3)0.743 (14)
H10A0.03910.12010.33850.150*0.743 (14)
H10B0.06670.03290.43800.150*0.743 (14)
H10C0.02020.05480.27270.150*0.743 (14)
C110.1582 (4)0.1659 (6)0.2620 (10)0.101 (3)0.743 (14)
H11A0.20510.16610.22420.151*0.743 (14)
H11B0.12420.23380.19640.151*0.743 (14)
H11C0.16400.20660.36720.151*0.743 (14)
C9A0.1107 (14)0.144 (2)0.347 (3)0.091 (7)0.153 (7)
H9D0.07800.11770.42150.136*0.153 (7)
H9E0.15580.18810.40120.136*0.153 (7)
H9F0.08770.22280.27420.136*0.153 (7)
C10A0.1509 (13)0.029 (3)0.0996 (17)0.082 (7)0.153 (7)
H10D0.13420.05660.02730.122*0.153 (7)
H10E0.12930.12990.06180.122*0.153 (7)
H10F0.20380.03660.10960.122*0.153 (7)
C11A0.0616 (9)0.129 (2)0.242 (3)0.082 (6)0.153 (7)
H11D0.07910.23750.22950.124*0.153 (7)
H11E0.03740.12350.33360.124*0.153 (7)
H11F0.02740.09960.15170.124*0.153 (7)
C9B0.072 (2)0.059 (7)0.360 (6)0.085 (11)0.104 (13)
H9G0.04400.02910.39570.128*0.104 (13)
H9H0.09780.11520.44800.128*0.104 (13)
H9I0.03910.13240.29830.128*0.104 (13)
C11B0.089 (3)0.128 (6)0.138 (7)0.111 (19)0.104 (13)
H11G0.08420.23240.18550.167*0.104 (13)
H11H0.04060.08730.09870.167*0.104 (13)
H11I0.11730.13920.05280.167*0.104 (13)
C10B0.173 (2)0.115 (6)0.180 (7)0.095 (11)0.104 (13)
H10G0.17730.07900.07530.142*0.104 (13)
H10H0.14900.21850.17560.142*0.104 (13)
H10I0.22160.12420.23830.142*0.104 (13)
C120.35791 (18)0.0495 (4)0.4751 (4)0.0746 (9)
H12A0.33050.00270.38300.112*
H12B0.34010.00650.56620.112*
H12C0.40930.02340.47850.112*
C130.46617 (16)0.2627 (5)0.6612 (4)0.0859 (11)
H13A0.49760.20620.59870.129*
H13B0.44900.18830.73400.129*
H13C0.49350.34900.71750.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0848 (15)0.0745 (15)0.0504 (12)0.0125 (11)0.0108 (9)0.0006 (10)
N10.0721 (15)0.0500 (14)0.0461 (12)0.0083 (12)0.0054 (10)0.0016 (10)
C10.0617 (17)0.0420 (16)0.0468 (13)0.0051 (12)0.0073 (12)0.0018 (12)
C20.0576 (16)0.0471 (17)0.0527 (14)0.0025 (13)0.0132 (12)0.0018 (12)
C30.0570 (17)0.071 (2)0.0577 (16)0.0049 (15)0.0082 (13)0.0023 (15)
C40.074 (2)0.069 (2)0.073 (2)0.0191 (17)0.0008 (16)0.0073 (16)
C50.104 (3)0.0400 (18)0.089 (2)0.0114 (17)0.001 (2)0.0069 (16)
C60.076 (2)0.0459 (18)0.0706 (18)0.0028 (15)0.0011 (15)0.0033 (14)
C70.0631 (17)0.0461 (17)0.0515 (16)0.0017 (13)0.0104 (12)0.0003 (12)
C80.0728 (19)0.0537 (18)0.0629 (18)0.0116 (14)0.0046 (14)0.0043 (14)
C90.085 (4)0.100 (5)0.064 (3)0.027 (3)0.013 (3)0.001 (3)
C100.081 (3)0.122 (6)0.098 (4)0.030 (4)0.016 (3)0.010 (4)
C110.135 (5)0.051 (3)0.111 (5)0.012 (3)0.004 (4)0.017 (3)
C9A0.095 (11)0.080 (9)0.101 (10)0.016 (8)0.024 (8)0.008 (8)
C10A0.085 (10)0.085 (11)0.073 (8)0.005 (8)0.006 (7)0.008 (8)
C11A0.076 (9)0.085 (9)0.083 (10)0.004 (7)0.000 (7)0.011 (8)
C9B0.084 (13)0.082 (15)0.092 (13)0.006 (9)0.018 (9)0.011 (9)
C11B0.11 (2)0.12 (2)0.11 (2)0.002 (10)0.008 (10)0.005 (10)
C10B0.103 (13)0.092 (14)0.092 (14)0.008 (9)0.020 (9)0.013 (10)
C120.082 (2)0.061 (2)0.082 (2)0.0128 (16)0.0142 (17)0.0059 (16)
C130.065 (2)0.110 (3)0.081 (2)0.001 (2)0.0016 (16)0.006 (2)
Geometric parameters (Å, º) top
O1—C71.229 (3)C10—H10B0.96
N1—C71.350 (3)C10—H10C0.96
N1—C11.440 (3)C11—H11A0.96
N1—H1N0.94C11—H11B0.96
C1—C61.378 (4)C11—H11C0.96
C1—C21.401 (3)C9A—H9D0.96
C2—C31.405 (4)C9A—H9E0.96
C2—C121.505 (4)C9A—H9F0.96
C3—C41.374 (4)C10A—H10D0.96
C3—C131.505 (4)C10A—H10E0.96
C4—C51.378 (4)C10A—H10F0.96
C4—H40.93C11A—H11D0.96
C5—C61.386 (4)C11A—H11E0.96
C5—H50.93C11A—H11F0.96
C6—H60.93C9B—H9G0.96
C7—C81.539 (4)C9B—H9H0.96
C8—C91.522 (4)C9B—H9I0.96
C8—C101.525 (5)C11B—H11G0.96
C8—C9A1.529 (8)C11B—H11H0.96
C8—C10A1.530 (8)C11B—H11I0.96
C8—C9B1.533 (8)C10B—H10G0.96
C8—C11B1.534 (8)C10B—H10H0.96
C8—C10B1.539 (8)C10B—H10I0.96
C8—C111.547 (5)C12—H12A0.96
C8—C11A1.547 (8)C12—H12B0.96
C9—H9A0.96C12—H12C0.96
C9—H9B0.96C13—H13A0.96
C9—H9C0.96C13—H13B0.96
C10—H10A0.96C13—H13C0.96
C7—N1—C1121.8 (2)C8—C11—H11B109.5
C7—N1—H1N126.2H11A—C11—H11B109.5
C1—N1—H1N111.0C8—C11—H11C109.5
C6—C1—C2121.4 (2)H11A—C11—H11C109.5
C6—C1—N1117.5 (2)H11B—C11—H11C109.5
C2—C1—N1121.1 (2)C8—C9A—H9D109.5
C1—C2—C3118.4 (2)C8—C9A—H9E109.5
C1—C2—C12120.9 (2)H9D—C9A—H9E109.5
C3—C2—C12120.6 (3)C8—C9A—H9F109.5
C4—C3—C2119.1 (3)H9D—C9A—H9F109.5
C4—C3—C13119.8 (3)H9E—C9A—H9F109.5
C2—C3—C13121.1 (3)C8—C10A—H10D109.5
C3—C4—C5122.1 (3)C8—C10A—H10E109.5
C3—C4—H4119.0H10D—C10A—H10E109.5
C5—C4—H4119.0C8—C10A—H10F109.5
C4—C5—C6119.4 (3)H10D—C10A—H10F109.5
C4—C5—H5120.3H10E—C10A—H10F109.5
C6—C5—H5120.3C8—C11A—H11D109.5
C1—C6—C5119.5 (3)C8—C11A—H11E109.5
C1—C6—H6120.2H11D—C11A—H11E109.5
C5—C6—H6120.2C8—C11A—H11F109.5
O1—C7—N1122.6 (2)H11D—C11A—H11F109.5
O1—C7—C8119.9 (2)H11E—C11A—H11F109.5
N1—C7—C8117.5 (2)C8—C9B—H9G109.5
C9—C8—C10109.7 (3)C8—C9B—H9H109.5
C9A—C8—C10A112.2 (7)H9G—C9B—H9H109.5
C9B—C8—C11B110 (3)C8—C9B—H9I109.5
C9B—C8—C10B117 (3)H9G—C9B—H9I109.5
C11B—C8—C10B110 (3)H9H—C9B—H9I109.5
C9—C8—C7115.7 (3)C8—C11B—H11G109.5
C10—C8—C7108.6 (3)C8—C11B—H11H109.5
C9A—C8—C7108.8 (10)H11G—C11B—H11H109.5
C10A—C8—C7112.1 (9)C8—C11B—H11I109.5
C9B—C8—C7109 (2)H11G—C11B—H11I109.5
C11B—C8—C7107 (2)H11H—C11B—H11I109.5
C10B—C8—C7103.6 (16)C8—C10B—H10G109.5
C9—C8—C11108.5 (3)C8—C10B—H10H109.5
C10—C8—C11108.8 (3)H10G—C10B—H10H109.5
C7—C8—C11105.3 (3)C8—C10B—H10I109.5
C9A—C8—C11A111.3 (7)H10G—C10B—H10I109.5
C10A—C8—C11A110.6 (7)H10H—C10B—H10I109.5
C8—C9—H9A109.5C2—C12—H12A109.5
C8—C9—H9B109.5C2—C12—H12B109.5
H9A—C9—H9B109.5H12A—C12—H12B109.5
C8—C9—H9C109.5C2—C12—H12C109.5
H9A—C9—H9C109.5H12A—C12—H12C109.5
H9B—C9—H9C109.5H12B—C12—H12C109.5
C8—C10—H10A109.5C3—C13—H13A109.5
C8—C10—H10B109.5C3—C13—H13B109.5
H10A—C10—H10B109.5H13A—C13—H13B109.5
C8—C10—H10C109.5C3—C13—H13C109.5
H10A—C10—H10C109.5H13A—C13—H13C109.5
H10B—C10—H10C109.5H13B—C13—H13C109.5
C8—C11—H11A109.5
C7—N1—C1—C6116.5 (3)O1—C7—C8—C9166.5 (5)
C7—N1—C1—C264.6 (3)N1—C7—C8—C916.0 (5)
C6—C1—C2—C32.9 (4)O1—C7—C8—C1042.6 (5)
N1—C1—C2—C3178.2 (2)N1—C7—C8—C10139.9 (5)
C6—C1—C2—C12175.1 (2)O1—C7—C8—C9A24.7 (11)
N1—C1—C2—C123.8 (4)N1—C7—C8—C9A152.8 (11)
C1—C2—C3—C42.1 (4)O1—C7—C8—C10A149.4 (11)
C12—C2—C3—C4176.0 (3)N1—C7—C8—C10A28.1 (11)
C1—C2—C3—C13178.7 (2)O1—C7—C8—C9B16 (2)
C12—C2—C3—C133.3 (4)N1—C7—C8—C9B166 (2)
C2—C3—C4—C50.4 (5)O1—C7—C8—C11B135 (3)
C13—C3—C4—C5178.9 (3)N1—C7—C8—C11B48 (3)
C3—C4—C5—C62.1 (5)O1—C7—C8—C10B109 (3)
C2—C1—C6—C51.2 (4)N1—C7—C8—C10B69 (3)
N1—C1—C6—C5179.8 (3)O1—C7—C8—C1173.8 (5)
C4—C5—C6—C11.3 (5)N1—C7—C8—C11103.7 (5)
C1—N1—C7—O12.5 (4)O1—C7—C8—C11A92.6 (11)
C1—N1—C7—C8180.0 (2)N1—C7—C8—C11A89.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.942.112.966 (3)151
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H19NO
Mr205.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)18.276 (4), 8.227 (2), 8.633 (2)
β (°) 97.94 (2)
V3)1285.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.45 × 0.16 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.971, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4295, 2349, 1214
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.221, 0.96
No. of reflections2349
No. of parameters195
No. of restraints112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.942.112.966 (3)151
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for resumption of his research fellowship.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o1983–o1984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, o2073–o2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds