organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1484-o1485

6-Amino-2,5-bis­­(pivaloylamino)pyrimidin-4(3H)-one dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 May 2009; accepted 22 May 2009; online 6 June 2009)

The asymmetric unit of the title compound, C14H23N5O3·2H2O, contains two crystallographically independent 6-amino-2,5-bis­(pivaloylamino)pyrimidin-4(3H)-one mol­ecules (A and B) with similar geometry and four water mol­ecules. In both independent mol­ecules, one of the amide groups is almost coplanar with the pyrimidine ring [dihedral angle of 12.85 (9) in A and 12.30 (10)° in B], whereas the other amide group is significantly twisted away from it [dihedral angle is 72.18 (7) in A and 71.29 (7)° in B]. In each independent mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. Mol­ecules A and B are linked into chains along the a axis by N—H⋯O and C—H⋯O hydrogen bonds. Adjacent chains are linked into a two-dimensional network parallel to the ac plane by water mol­ecules via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background on substituted pyrimidines, see: Lednicer & Mitscher (1977[Lednicer, D. & Mitscher, L. A. (1977). The Organic Chemistry of Drug Synthesis, Vols. 1, 2, 3 and 4. New York: John Wiley and Sons.]); Blackburn & Gait (1996[Blackburn, G. M. & Gait, M. J. (1996). In Nucleic Acids in Chemistry and Biology. Oxford and New York: Oxford University Press.]); VanAllan (1976[VanAllan, J. A. (1976). Organic Syntheses, Coll. Vol. 4, p. 245. New York, Chichester, Brisbane, Toronto, Singapore. John Wiley & Sons, Inc.]); Goswami et al. (2007[Goswami, S., Jana, S., Dey, S. & Adak, A. K. (2007). Aust. J. Chem. 60, 120-123.]); Brown (1988[Brown, D. J. (1988). Fused Pyrimidines: the Chemistry of Heterocyclic Compounds, Vol. 24, p. 3. New York: John Wiley and Sons.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23N5O3·2H2O

  • Mr = 345.41

  • Triclinic, [P \overline 1]

  • a = 7.5560 (3) Å

  • b = 14.1008 (6) Å

  • c = 18.0713 (6) Å

  • α = 71.079 (2)°

  • β = 89.988 (2)°

  • γ = 86.682 (3)°

  • V = 1817.98 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.57 × 0.19 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.991

  • 10525 measured reflections

  • 10525 independent reflections

  • 8199 reflections with I > 2σ(I)

  • Rint = 0.0000

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.162

  • S = 1.11

  • 10525 reflections

  • 447 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4AA⋯O1Wi 0.86 2.07 2.918 (2) 167
N4B—H4BA⋯O4Wii 0.86 2.08 2.920 (2) 166
N5B—H5BA⋯O4Wiii 0.86 2.32 3.160 (2) 166
N5B—H5BB⋯O1Aiv 0.86 2.09 2.861 (2) 149
O1W—H1W1⋯O2Wv 0.87 2.00 2.857 (2) 167
O1W—H2W1⋯O2Wvi 0.90 1.92 2.819 (2) 178
O2W—H2W2⋯O2Bv 0.89 1.96 2.824 (2) 162
O3W—H1W3⋯O2Aiii 0.86 1.91 2.722 (2) 158
O3W—H2W3⋯O2Avii 0.89 1.97 2.833 (2) 162
O4W—H1W4⋯O3Wviii 0.88 1.99 2.865 (2) 174
N3A—H3AA⋯O3A 0.86 1.98 2.633 (2) 132
N5A—H5AA⋯O1W 0.86 2.32 3.163 (2) 167
N5A—H5AB⋯O1B 0.86 2.08 2.854 (2) 149
N3B—H3BA⋯O3B 0.86 1.97 2.632 (2) 132
O2W—H1W2⋯O2B 0.87 1.91 2.717 (2) 154
O4W—H2W4⋯O3W 0.88 1.93 2.811 (2) 173
C14A—H14A⋯O1B 0.96 2.53 3.355 (3) 144
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z; (iv) x-1, y, z; (v) -x+1, -y, -z+1; (vi) x+1, y, z; (vii) x-1, y+1, z; (viii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various drugs and biologically active molecules contain substituted pyrimidines (Lednicer & Mitscher, 1977). Adenine, uracil, thyamine are pyrimidine-based bases in nucleic acids (Blackburn & Gait, 1996). 2 5,6-Triamino-3H- pyrimidin-4-one dihydrochloride (VanAllan, 1976; Goswami et al. 2007) is an important component for the synthesis of pterin molecules (Brown, 1988). The title compound was selectively synthesized by the reaction of 2,5,6-triamino-3H-pyrimidin-4-one dihydrochloride with pivalic anhydride and its crystal structure is reported here.

There are two crystallographically independent 6-amino-2,5-dipivaloyl-3H-pyrimidin-4-one molecules, A and B, and four water molecules in the asymmetric unit of the title compound (Fig 1). Molecules A and B have similar geometry. The bond lengths (Allen et al., 1987) and angles are normal. In both A and B, one of the amide groups is almost coplanar with the pyrimidine ring (dihedral angle is 12.85 (9)° in A and 12.30 (10)° in B) whereas the other is significantly twisted away from the pyrimidine ring (dihedral angle is 72.18 (7)° in A and 71.29 (07)° in B) In each independent molecule, an intramolecular N—H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

The independent molecules are linked into chains along the a axis by N—H···O and C—H···O hydrogen bonds. The adjacent chains are linked into a two-dimensional network parallel to the ac plane (Fig.2) by water molecules via N—H···O and O—H···O hydrogen bonds (Table 1).

Related literature top

For general background on substituted pyrimidines, see: Lednicer & Mitscher (1977); Blackburn & Gait (1996); VanAllan (1976); Goswami et al. (2007); Brown (1988). For related bond-length data, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2,5,6-Triaminopyrimidine-4-(3H)-one dihydrochloride (200mg, 0.93mmol) was heated with pivalic anhydride (1 ml) at 393 K for 6 h in the presence of a catalytic amount of 4-dimethylaminopyridine (DMAP) (10 mol%). After the formation of a major amount of dipivaloyl product as monitored by TLC, the solid residue was washed with petroleum ether to remove the excess pivalic anhydride. The solid residue was purified through silica gel (100–200 mesh) column chromatography eluting 3% methanol in chloroform to get the pure crystalline solid. Single crystals were grown by slow evaporation of a chloroform solution (m.p. 523-525 K). IR: 3416, 3217, 2965, 2873,1645, 1568, 1488, 1438, 1240, 1176, 763 cm-1. 1H NMR (CDCl3, 400 MHz): δ(p.p.m.): 11.61 (bs, 1H), 8.27 (bs, 1H), 7.64 (bs, 1H), 5.35 (bs, 2H), 1.28 (s, 9H), 1.24 (s, 9H). LC—MS: m/z (%): 310.4[(M+H)+,40], 292.3 (100), 186.3.

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The H atoms of the water molecules were located in a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(O). The crystal was a pseudo-merohedral triplet with ratio 0.764 (5):0.155 (5):0.081 (5). The refined BASF parameters are 0.155 (5) and 0.081 (5).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonding.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonding.
6-Amino-2,5-bis(pivaloylamino)pyrimidin-4(3H)-one dihydrate top
Crystal data top
C14H23N5O3·2H2OZ = 4
Mr = 345.41F(000) = 744
Triclinic, P1Dx = 1.262 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5560 (3) ÅCell parameters from 8925 reflections
b = 14.1008 (6) Åθ = 3.1–32.5°
c = 18.0713 (6) ŵ = 0.10 mm1
α = 71.079 (2)°T = 100 K
β = 89.988 (2)°Block, colourless
γ = 86.682 (3)°0.57 × 0.19 × 0.09 mm
V = 1817.98 (12) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10525 independent reflections
Radiation source: fine-focus sealed tube8199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 30.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.947, Tmax = 0.991k = 1819
10525 measured reflectionsl = 025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.7967P]
where P = (Fo2 + 2Fc2)/3
10525 reflections(Δ/σ)max = 0.001
447 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H23N5O3·2H2Oγ = 86.682 (3)°
Mr = 345.41V = 1817.98 (12) Å3
Triclinic, P1Z = 4
a = 7.5560 (3) ÅMo Kα radiation
b = 14.1008 (6) ŵ = 0.10 mm1
c = 18.0713 (6) ÅT = 100 K
α = 71.079 (2)°0.57 × 0.19 × 0.09 mm
β = 89.988 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8199 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.991Rint = 0.000
10525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.11Δρmax = 0.42 e Å3
10525 reflectionsΔρmin = 0.35 e Å3
447 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.0113 (2)0.26217 (11)0.14678 (9)0.0172 (3)
O2A0.9781 (2)0.00932 (11)0.11107 (8)0.0163 (3)
O3A1.2104 (2)0.26095 (12)0.29920 (9)0.0211 (3)
N1A0.7981 (2)0.15883 (12)0.14173 (9)0.0126 (3)
H1AA0.69950.15220.12070.015*
N2A0.9705 (2)0.00908 (12)0.33668 (9)0.0124 (3)
N3A1.0445 (2)0.08254 (12)0.24031 (9)0.0126 (3)
H3AA1.09500.13340.23060.015*
N4A1.1220 (2)0.16358 (12)0.37291 (9)0.0129 (3)
H4AA1.12990.15870.41900.016*
N5A0.8070 (2)0.14048 (13)0.30396 (10)0.0151 (3)
H5AA0.81360.13560.35260.018*
H5AB0.75060.19160.27120.018*
C1A0.8701 (3)0.24963 (15)0.11802 (11)0.0121 (4)
C2A0.8808 (3)0.07412 (14)0.20033 (11)0.0121 (4)
C3A0.8843 (3)0.06879 (14)0.27938 (11)0.0120 (4)
C4A1.0438 (3)0.08141 (14)0.31492 (11)0.0126 (4)
C5A0.9655 (3)0.00353 (15)0.17828 (11)0.0120 (4)
C6A1.1882 (3)0.25228 (15)0.36395 (11)0.0137 (4)
C7A1.2277 (3)0.33855 (15)0.44031 (12)0.0154 (4)
C8A1.2899 (3)0.43211 (17)0.42020 (13)0.0211 (5)
H8AA1.19950.44820.38960.032*
H8AB1.31240.48740.46760.032*
H8AC1.39670.41960.39070.032*
C9A1.3758 (4)0.31103 (18)0.48672 (14)0.0228 (5)
H9AA1.33850.25120.49830.034*
H9AB1.48110.29950.45610.034*
H9AC1.40010.36520.53470.034*
C10A1.0576 (3)0.35827 (17)0.48821 (13)0.0217 (5)
H10A0.96290.36730.45620.033*
H10B1.02650.30210.50560.033*
H10C1.07710.41780.53280.033*
C11A0.7768 (3)0.33580 (15)0.05214 (12)0.0152 (4)
C12A0.9017 (4)0.3536 (2)0.01777 (14)0.0334 (6)
H12A0.85550.41030.06040.050*
H12B0.91020.29510.03400.050*
H12C1.01720.36660.00260.050*
C13A0.7607 (4)0.42818 (17)0.07890 (17)0.0278 (5)
H13A0.68180.41610.12220.042*
H13B0.71470.48520.03650.042*
H13C0.87540.44130.09480.042*
C14A0.5943 (3)0.31374 (17)0.02795 (14)0.0226 (5)
H14A0.51790.29880.07220.034*
H14B0.60540.25720.00930.034*
H14C0.54470.37140.01290.034*
O1B0.5105 (2)0.26137 (11)0.21892 (9)0.0177 (3)
O2B0.4795 (2)0.01130 (11)0.39406 (8)0.0160 (3)
O3B0.7098 (2)0.26303 (12)0.33417 (9)0.0213 (3)
N1B0.3005 (2)0.15684 (12)0.27823 (10)0.0124 (3)
H1BA0.20270.15010.30320.015*
N2B0.4710 (2)0.01103 (12)0.16825 (9)0.0124 (3)
N3B0.5460 (2)0.08400 (12)0.30196 (9)0.0125 (3)
H3BA0.59720.13450.33740.015*
N4B0.6226 (2)0.16539 (13)0.21065 (10)0.0135 (3)
H4BA0.63100.16070.16220.016*
N5B0.3072 (2)0.13860 (13)0.12500 (10)0.0143 (3)
H5BA0.31290.13330.07900.017*
H5BB0.25120.18990.13190.017*
C1B0.3719 (3)0.24772 (15)0.25544 (11)0.0123 (4)
C2B0.3819 (3)0.07227 (14)0.26221 (11)0.0124 (4)
C3B0.3855 (3)0.06723 (14)0.18588 (11)0.0113 (3)
C4B0.5443 (3)0.08344 (14)0.22681 (11)0.0118 (4)
C5B0.4673 (3)0.00523 (15)0.32382 (11)0.0129 (4)
C6B0.6886 (3)0.25413 (15)0.26499 (12)0.0149 (4)
C7B0.7303 (3)0.34013 (16)0.23251 (12)0.0162 (4)
C8B0.7917 (4)0.43431 (17)0.30020 (14)0.0226 (5)
H8BA0.70000.45110.33820.034*
H8BB0.89700.42160.32420.034*
H8BC0.81650.48920.28050.034*
C9B0.8798 (4)0.31215 (18)0.17286 (14)0.0232 (5)
H9BA0.84180.25340.13020.035*
H9BB0.90780.36690.15340.035*
H9BC0.98320.29870.19780.035*
C10B0.5631 (3)0.36058 (17)0.19338 (14)0.0231 (5)
H10D0.53120.30380.14810.035*
H10E0.46760.37160.22970.035*
H10F0.58580.41910.17790.035*
C11B0.2801 (3)0.33333 (16)0.27831 (12)0.0150 (4)
C12B0.4114 (4)0.3547 (2)0.33506 (17)0.0323 (6)
H12D0.42660.29700.38130.049*
H12E0.36590.41140.34910.049*
H12F0.52350.36910.31020.049*
C13B0.2533 (3)0.42518 (17)0.20411 (14)0.0214 (5)
H13D0.17190.41080.16890.032*
H13E0.36500.44040.17910.032*
H13F0.20620.48170.21800.032*
C14B0.1021 (4)0.30911 (17)0.31798 (15)0.0236 (5)
H14D0.02200.29290.28330.035*
H14E0.05330.36630.33050.035*
H14F0.11910.25290.36510.035*
O1W0.8987 (2)0.12286 (11)0.47888 (8)0.0179 (3)
H1W10.86480.06140.49420.027*
H2W11.01490.10360.47980.027*
O2W0.2630 (2)0.06473 (13)0.48386 (9)0.0219 (3)
H1W20.33710.06020.44830.033*
H2W20.33760.06100.52300.033*
O3W0.2385 (2)0.93480 (13)0.01760 (9)0.0225 (3)
H1W30.16420.94170.01970.034*
H2W30.17050.94300.05590.034*
O4W0.6016 (2)0.87651 (11)0.04160 (9)0.0181 (3)
H1W40.64320.93650.02130.027*
H2W40.48730.89110.03210.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0161 (7)0.0141 (7)0.0198 (7)0.0005 (6)0.0036 (6)0.0033 (6)
O2A0.0219 (8)0.0187 (7)0.0083 (6)0.0010 (6)0.0016 (5)0.0050 (5)
O3A0.0304 (9)0.0205 (8)0.0122 (7)0.0059 (7)0.0003 (6)0.0064 (6)
N1A0.0131 (8)0.0133 (8)0.0096 (7)0.0008 (6)0.0027 (6)0.0013 (6)
N2A0.0155 (8)0.0121 (8)0.0091 (7)0.0010 (6)0.0006 (6)0.0032 (6)
N3A0.0166 (9)0.0113 (7)0.0098 (7)0.0017 (6)0.0001 (6)0.0038 (6)
N4A0.0181 (9)0.0128 (8)0.0076 (7)0.0011 (6)0.0022 (6)0.0034 (6)
N5A0.0211 (9)0.0140 (8)0.0099 (7)0.0028 (7)0.0001 (6)0.0039 (6)
C1A0.0135 (9)0.0124 (9)0.0104 (8)0.0001 (7)0.0030 (7)0.0039 (7)
C2A0.0139 (9)0.0117 (8)0.0093 (8)0.0004 (7)0.0003 (7)0.0016 (6)
C3A0.0122 (9)0.0121 (8)0.0115 (8)0.0020 (7)0.0008 (7)0.0034 (7)
C4A0.0144 (9)0.0121 (9)0.0101 (8)0.0021 (7)0.0001 (7)0.0018 (7)
C5A0.0130 (9)0.0123 (9)0.0100 (8)0.0011 (7)0.0006 (7)0.0025 (7)
C6A0.0161 (10)0.0127 (9)0.0117 (8)0.0008 (7)0.0024 (7)0.0036 (7)
C7A0.0212 (11)0.0116 (9)0.0123 (8)0.0031 (8)0.0009 (7)0.0028 (7)
C8A0.0267 (12)0.0162 (10)0.0195 (10)0.0064 (9)0.0036 (9)0.0060 (8)
C9A0.0289 (13)0.0181 (10)0.0203 (10)0.0041 (9)0.0108 (9)0.0058 (8)
C10A0.0285 (12)0.0152 (10)0.0176 (10)0.0022 (9)0.0055 (9)0.0008 (8)
C11A0.0162 (10)0.0114 (9)0.0134 (9)0.0014 (7)0.0011 (7)0.0020 (7)
C12A0.0294 (14)0.0379 (14)0.0190 (11)0.0033 (11)0.0085 (10)0.0091 (10)
C13A0.0262 (13)0.0136 (10)0.0416 (14)0.0029 (9)0.0079 (11)0.0068 (10)
C14A0.0252 (12)0.0180 (10)0.0197 (10)0.0009 (9)0.0074 (9)0.0003 (8)
O1B0.0167 (8)0.0150 (7)0.0211 (7)0.0010 (6)0.0034 (6)0.0054 (6)
O2B0.0196 (8)0.0199 (7)0.0100 (6)0.0030 (6)0.0009 (5)0.0078 (5)
O3B0.0317 (9)0.0179 (7)0.0140 (7)0.0072 (6)0.0030 (6)0.0061 (6)
N1B0.0126 (8)0.0126 (8)0.0144 (7)0.0003 (6)0.0023 (6)0.0077 (6)
N2B0.0147 (8)0.0128 (8)0.0109 (7)0.0001 (6)0.0002 (6)0.0057 (6)
N3B0.0163 (9)0.0116 (7)0.0096 (7)0.0020 (6)0.0005 (6)0.0039 (6)
N4B0.0189 (9)0.0134 (8)0.0099 (7)0.0019 (7)0.0003 (6)0.0065 (6)
N5B0.0188 (9)0.0136 (8)0.0112 (7)0.0028 (6)0.0018 (6)0.0055 (6)
C1B0.0147 (10)0.0115 (9)0.0109 (8)0.0016 (7)0.0033 (7)0.0045 (7)
C2B0.0141 (9)0.0123 (9)0.0131 (8)0.0008 (7)0.0005 (7)0.0075 (7)
C3B0.0111 (9)0.0118 (8)0.0115 (8)0.0015 (7)0.0005 (7)0.0046 (7)
C4B0.0120 (9)0.0120 (8)0.0128 (8)0.0008 (7)0.0012 (7)0.0060 (7)
C5B0.0136 (9)0.0144 (9)0.0128 (8)0.0017 (7)0.0026 (7)0.0072 (7)
C6B0.0149 (10)0.0137 (9)0.0167 (9)0.0006 (7)0.0012 (7)0.0061 (7)
C7B0.0213 (11)0.0139 (9)0.0151 (9)0.0025 (8)0.0003 (8)0.0077 (7)
C8B0.0314 (13)0.0146 (10)0.0207 (10)0.0058 (9)0.0015 (9)0.0052 (8)
C9B0.0279 (13)0.0197 (11)0.0213 (10)0.0055 (9)0.0072 (9)0.0070 (8)
C10B0.0278 (13)0.0183 (10)0.0254 (11)0.0016 (9)0.0080 (9)0.0104 (9)
C11B0.0182 (10)0.0127 (9)0.0156 (9)0.0024 (8)0.0023 (8)0.0072 (7)
C12B0.0392 (16)0.0310 (13)0.0356 (14)0.0070 (11)0.0154 (12)0.0244 (11)
C13B0.0234 (12)0.0134 (10)0.0259 (11)0.0010 (8)0.0008 (9)0.0048 (8)
C14B0.0283 (13)0.0164 (10)0.0272 (11)0.0030 (9)0.0100 (10)0.0092 (9)
O1W0.0225 (8)0.0167 (7)0.0140 (7)0.0023 (6)0.0011 (6)0.0049 (5)
O2W0.0174 (8)0.0347 (9)0.0155 (7)0.0048 (7)0.0001 (6)0.0119 (6)
O3W0.0190 (8)0.0352 (9)0.0148 (7)0.0039 (7)0.0031 (6)0.0111 (6)
O4W0.0209 (8)0.0176 (7)0.0162 (7)0.0037 (6)0.0026 (6)0.0067 (6)
Geometric parameters (Å, º) top
O1A—C1A1.233 (3)N1B—C2B1.422 (2)
O2A—C5A1.247 (2)N1B—H1BA0.86
O3A—C6A1.226 (2)N2B—C4B1.305 (3)
N1A—C1A1.358 (2)N2B—C3B1.372 (2)
N1A—C2A1.426 (2)N3B—C4B1.355 (2)
N1A—H1AA0.86N3B—C5B1.397 (2)
N2A—C4A1.302 (3)N3B—H3BA0.86
N2A—C3A1.372 (3)N4B—C6B1.382 (3)
N3A—C4A1.354 (2)N4B—C4B1.382 (2)
N3A—C5A1.403 (2)N4B—H4BA0.86
N3A—H3AA0.86N5B—C3B1.336 (2)
N4A—C6A1.378 (3)N5B—H5BA0.86
N4A—C4A1.387 (2)N5B—H5BB0.86
N4A—H4AA0.86C1B—C11B1.529 (3)
N5A—C3A1.335 (3)C2B—C3B1.404 (3)
N5A—H5AA0.86C2B—C5B1.407 (3)
N5A—H5AB0.86C6B—C7B1.527 (3)
C1A—C11A1.534 (3)C7B—C8B1.533 (3)
C2A—C5A1.403 (3)C7B—C10B1.535 (3)
C2A—C3A1.406 (3)C7B—C9B1.539 (3)
C6A—C7A1.531 (3)C8B—H8BA0.96
C7A—C8A1.527 (3)C8B—H8BB0.96
C7A—C10A1.538 (3)C8B—H8BC0.96
C7A—C9A1.538 (3)C9B—H9BA0.96
C8A—H8AA0.96C9B—H9BB0.96
C8A—H8AB0.96C9B—H9BC0.96
C8A—H8AC0.96C10B—H10D0.96
C9A—H9AA0.96C10B—H10E0.96
C9A—H9AB0.96C10B—H10F0.96
C9A—H9AC0.96C11B—C14B1.527 (3)
C10A—H10A0.96C11B—C13B1.536 (3)
C10A—H10B0.96C11B—C12B1.537 (3)
C10A—H10C0.96C12B—H12D0.96
C11A—C14A1.526 (3)C12B—H12E0.96
C11A—C13A1.528 (3)C12B—H12F0.96
C11A—C12A1.539 (3)C13B—H13D0.96
C12A—H12A0.96C13B—H13E0.96
C12A—H12B0.96C13B—H13F0.96
C12A—H12C0.96C14B—H14D0.96
C13A—H13A0.96C14B—H14E0.96
C13A—H13B0.96C14B—H14F0.96
C13A—H13C0.96O1W—H1W10.87
C14A—H14A0.96O1W—H2W10.90
C14A—H14B0.96O2W—H1W20.87
C14A—H14C0.96O2W—H2W20.89
O1B—C1B1.229 (3)O3W—H1W30.85
O2B—C5B1.247 (2)O3W—H2W30.89
O3B—C6B1.225 (3)O4W—H1W40.88
N1B—C1B1.357 (3)O4W—H2W40.88
C1A—N1A—C2A122.09 (17)C2B—N1B—H1BA118.9
C1A—N1A—H1AA119.0C4B—N2B—C3B116.57 (16)
C2A—N1A—H1AA119.0C4B—N3B—C5B122.21 (17)
C4A—N2A—C3A116.50 (16)C4B—N3B—H3BA118.9
C4A—N3A—C5A122.14 (17)C5B—N3B—H3BA118.9
C4A—N3A—H3AA118.9C6B—N4B—C4B126.21 (17)
C5A—N3A—H3AA118.9C6B—N4B—H4BA116.9
C6A—N4A—C4A126.41 (17)C4B—N4B—H4BA116.9
C6A—N4A—H4AA116.8C3B—N5B—H5BA120.0
C4A—N4A—H4AA116.8C3B—N5B—H5BB120.0
C3A—N5A—H5AA120.0H5BA—N5B—H5BB120.0
C3A—N5A—H5AB120.0O1B—C1B—N1B121.35 (18)
H5AA—N5A—H5AB120.0O1B—C1B—C11B119.82 (18)
O1A—C1A—N1A120.91 (18)N1B—C1B—C11B118.79 (18)
O1A—C1A—C11A120.20 (18)C3B—C2B—C5B119.80 (17)
N1A—C1A—C11A118.84 (18)C3B—C2B—N1B121.26 (17)
C5A—C2A—C3A119.52 (17)C5B—C2B—N1B118.87 (17)
C5A—C2A—N1A119.35 (17)N5B—C3B—N2B115.08 (17)
C3A—C2A—N1A121.09 (17)N5B—C3B—C2B122.54 (18)
N5A—C3A—N2A114.99 (17)N2B—C3B—C2B122.38 (17)
N5A—C3A—C2A122.35 (18)N2B—C4B—N3B124.38 (18)
N2A—C3A—C2A122.64 (18)N2B—C4B—N4B117.28 (17)
N2A—C4A—N3A124.42 (18)N3B—C4B—N4B118.33 (17)
N2A—C4A—N4A117.21 (17)O2B—C5B—N3B117.56 (18)
N3A—C4A—N4A118.35 (17)O2B—C5B—C2B127.85 (18)
O2A—C5A—N3A117.72 (18)N3B—C5B—C2B114.59 (17)
O2A—C5A—C2A127.59 (18)O3B—C6B—N4B122.21 (18)
N3A—C5A—C2A114.70 (17)O3B—C6B—C7B122.76 (19)
O3A—C6A—N4A121.84 (18)N4B—C6B—C7B115.02 (17)
O3A—C6A—C7A123.05 (18)C6B—C7B—C8B108.78 (17)
N4A—C6A—C7A115.10 (17)C6B—C7B—C10B109.49 (19)
C8A—C7A—C6A108.48 (17)C8B—C7B—C10B109.59 (19)
C8A—C7A—C10A109.87 (19)C6B—C7B—C9B109.57 (18)
C6A—C7A—C10A109.06 (18)C8B—C7B—C9B109.16 (19)
C8A—C7A—C9A109.16 (19)C10B—C7B—C9B110.22 (19)
C6A—C7A—C9A109.61 (18)C7B—C8B—H8BA109.5
C10A—C7A—C9A110.63 (18)C7B—C8B—H8BB109.5
C7A—C8A—H8AA109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BC109.5
C7A—C8A—H8AC109.5H8BB—C8B—H8BC109.5
H8AA—C8A—H8AC109.5C7B—C9B—H9BA109.5
H8AB—C8A—H8AC109.5C7B—C9B—H9BB109.5
C7A—C9A—H9AA109.5H9BA—C9B—H9BB109.5
C7A—C9A—H9AB109.5C7B—C9B—H9BC109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BC109.5
C7A—C9A—H9AC109.5H9BB—C9B—H9BC109.5
H9AA—C9A—H9AC109.5C7B—C10B—H10D109.5
H9AB—C9A—H9AC109.5C7B—C10B—H10E109.5
C7A—C10A—H10A109.5H10D—C10B—H10E109.5
C7A—C10A—H10B109.5C7B—C10B—H10F109.5
H10A—C10A—H10B109.5H10D—C10B—H10F109.5
C7A—C10A—H10C109.5H10E—C10B—H10F109.5
H10A—C10A—H10C109.5C14B—C11B—C1B114.60 (18)
H10B—C10A—H10C109.5C14B—C11B—C13B109.37 (19)
C14A—C11A—C13A109.63 (19)C1B—C11B—C13B108.17 (17)
C14A—C11A—C1A114.71 (17)C14B—C11B—C12B109.6 (2)
C13A—C11A—C1A107.86 (18)C1B—C11B—C12B104.75 (18)
C14A—C11A—C12A109.2 (2)C13B—C11B—C12B110.2 (2)
C13A—C11A—C12A110.5 (2)C11B—C12B—H12D109.5
C1A—C11A—C12A104.87 (18)C11B—C12B—H12E109.5
C11A—C12A—H12A109.5H12D—C12B—H12E109.5
C11A—C12A—H12B109.5C11B—C12B—H12F109.5
H12A—C12A—H12B109.5H12D—C12B—H12F109.5
C11A—C12A—H12C109.5H12E—C12B—H12F109.5
H12A—C12A—H12C109.5C11B—C13B—H13D109.5
H12B—C12A—H12C109.5C11B—C13B—H13E109.5
C11A—C13A—H13A109.5H13D—C13B—H13E109.5
C11A—C13A—H13B109.5C11B—C13B—H13F109.5
H13A—C13A—H13B109.5H13D—C13B—H13F109.5
C11A—C13A—H13C109.5H13E—C13B—H13F109.5
H13A—C13A—H13C109.5C11B—C14B—H14D109.5
H13B—C13A—H13C109.5C11B—C14B—H14E109.5
C11A—C14A—H14A109.5H14D—C14B—H14E109.5
C11A—C14A—H14B109.5C11B—C14B—H14F109.5
H14A—C14A—H14B109.5H14D—C14B—H14F109.5
C11A—C14A—H14C109.5H14E—C14B—H14F109.5
H14A—C14A—H14C109.5H1W1—O1W—H2W193.9
H14B—C14A—H14C109.5H1W2—O2W—H2W2100.6
C1B—N1B—C2B122.25 (17)H1W3—O3W—H2W3103.4
C1B—N1B—H1BA118.9H1W4—O4W—H2W4100.7
C2A—N1A—C1A—O1A0.1 (3)C2B—N1B—C1B—O1B0.7 (3)
C2A—N1A—C1A—C11A177.39 (17)C2B—N1B—C1B—C11B177.27 (17)
C1A—N1A—C2A—C5A106.0 (2)C1B—N1B—C2B—C3B70.7 (3)
C1A—N1A—C2A—C3A71.8 (3)C1B—N1B—C2B—C5B106.3 (2)
C4A—N2A—C3A—N5A178.46 (18)C4B—N2B—C3B—N5B178.07 (18)
C4A—N2A—C3A—C2A2.9 (3)C4B—N2B—C3B—C2B2.5 (3)
C5A—C2A—C3A—N5A179.67 (19)C5B—C2B—C3B—N5B179.83 (19)
N1A—C2A—C3A—N5A1.9 (3)N1B—C2B—C3B—N5B2.9 (3)
C5A—C2A—C3A—N2A1.2 (3)C5B—C2B—C3B—N2B0.4 (3)
N1A—C2A—C3A—N2A176.57 (19)N1B—C2B—C3B—N2B176.56 (18)
C3A—N2A—C4A—N3A2.1 (3)C3B—N2B—C4B—N3B2.3 (3)
C3A—N2A—C4A—N4A176.13 (18)C3B—N2B—C4B—N4B176.55 (17)
C5A—N3A—C4A—N2A0.5 (3)C5B—N3B—C4B—N2B0.0 (3)
C5A—N3A—C4A—N4A178.75 (18)C5B—N3B—C4B—N4B178.80 (18)
C6A—N4A—C4A—N2A172.1 (2)C6B—N4B—C4B—N2B172.0 (2)
C6A—N4A—C4A—N3A6.3 (3)C6B—N4B—C4B—N3B6.9 (3)
C4A—N3A—C5A—O2A177.46 (19)C4B—N3B—C5B—O2B178.21 (19)
C4A—N3A—C5A—C2A2.3 (3)C4B—N3B—C5B—C2B2.0 (3)
C3A—C2A—C5A—O2A178.3 (2)C3B—C2B—C5B—O2B178.5 (2)
N1A—C2A—C5A—O2A0.5 (3)N1B—C2B—C5B—O2B1.4 (3)
C3A—C2A—C5A—N3A1.4 (3)C3B—C2B—C5B—N3B1.8 (3)
N1A—C2A—C5A—N3A179.19 (17)N1B—C2B—C5B—N3B178.80 (17)
C4A—N4A—C6A—O3A12.3 (3)C4B—N4B—C6B—O3B12.1 (3)
C4A—N4A—C6A—C7A166.52 (19)C4B—N4B—C6B—C7B167.13 (19)
O3A—C6A—C7A—C8A1.9 (3)O3B—C6B—C7B—C8B2.4 (3)
N4A—C6A—C7A—C8A176.91 (19)N4B—C6B—C7B—C8B176.8 (2)
O3A—C6A—C7A—C10A121.5 (2)O3B—C6B—C7B—C10B122.1 (2)
N4A—C6A—C7A—C10A57.3 (2)N4B—C6B—C7B—C10B57.1 (2)
O3A—C6A—C7A—C9A117.2 (2)O3B—C6B—C7B—C9B116.9 (2)
N4A—C6A—C7A—C9A64.0 (2)N4B—C6B—C7B—C9B63.9 (2)
O1A—C1A—C11A—C14A173.80 (19)O1B—C1B—C11B—C14B175.6 (2)
N1A—C1A—C11A—C14A8.7 (3)N1B—C1B—C11B—C14B6.4 (3)
O1A—C1A—C11A—C13A51.3 (3)O1B—C1B—C11B—C13B53.3 (3)
N1A—C1A—C11A—C13A131.2 (2)N1B—C1B—C11B—C13B128.7 (2)
O1A—C1A—C11A—C12A66.4 (3)O1B—C1B—C11B—C12B64.3 (2)
N1A—C1A—C11A—C12A111.1 (2)N1B—C1B—C11B—C12B113.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4AA···O1Wi0.862.072.918 (2)167
N4B—H4BA···O4Wii0.862.082.920 (2)166
N5B—H5BA···O4Wiii0.862.323.160 (2)166
N5B—H5BB···O1Aiv0.862.092.861 (2)149
O1W—H1W1···O2Wv0.872.002.857 (2)167
O1W—H2W1···O2Wvi0.901.922.819 (2)178
O2W—H2W2···O2Bv0.891.962.824 (2)162
O3W—H1W3···O2Aiii0.861.912.722 (2)158
O3W—H2W3···O2Avii0.891.972.833 (2)162
O4W—H1W4···O3Wviii0.881.992.865 (2)174
N3A—H3AA···O3A0.861.982.633 (2)132
N5A—H5AA···O1W0.862.323.163 (2)167
N5A—H5AB···O1B0.862.082.854 (2)149
N3B—H3BA···O3B0.861.972.632 (2)132
O2W—H1W2···O2B0.871.912.717 (2)154
O4W—H2W4···O3W0.881.932.811 (2)173
C14A—H14A···O1B0.962.533.355 (3)144
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x1, y+1, z; (viii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H23N5O3·2H2O
Mr345.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5560 (3), 14.1008 (6), 18.0713 (6)
α, β, γ (°)71.079 (2), 89.988 (2), 86.682 (3)
V3)1817.98 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.57 × 0.19 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10525, 10525, 8199
Rint0.000
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.162, 1.11
No. of reflections10525
No. of parameters447
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4AA···O1Wi0.862.072.918 (2)167
N4B—H4BA···O4Wii0.862.082.920 (2)166
N5B—H5BA···O4Wiii0.862.323.160 (2)166
N5B—H5BB···O1Aiv0.862.092.861 (2)149
O1W—H1W1···O2Wv0.872.002.857 (2)167
O1W—H2W1···O2Wvi0.901.922.819 (2)178
O2W—H2W2···O2Bv0.891.962.824 (2)162
O3W—H1W3···O2Aiii0.861.912.722 (2)158
O3W—H2W3···O2Avii0.891.972.833 (2)162
O4W—H1W4···O3Wviii0.881.992.865 (2)174
N3A—H3AA···O3A0.861.982.633 (2)132
N5A—H5AA···O1W0.862.323.163 (2)167
N5A—H5AB···O1B0.862.082.854 (2)149
N3B—H3BA···O3B0.861.972.632 (2)132
O2W—H1W2···O2B0.871.912.717 (2)154
O4W—H2W4···O3W0.881.932.811 (2)173
C14A—H14A···O1B0.962.533.355 (3)144
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x1, y+1, z; (viii) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. SG thanks DST (SR/S1/OC-13/2005), Government of India, for financial support. AH and MD thank the CSIR, Government of India, for research fellowships.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlackburn, G. M. & Gait, M. J. (1996). In Nucleic Acids in Chemistry and Biology. Oxford and New York: Oxford University Press.  Google Scholar
First citationBrown, D. J. (1988). Fused Pyrimidines: the Chemistry of Heterocyclic Compounds, Vol. 24, p. 3. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S., Jana, S., Dey, S. & Adak, A. K. (2007). Aust. J. Chem. 60, 120–123.  Web of Science CrossRef CAS Google Scholar
First citationLednicer, D. & Mitscher, L. A. (1977). The Organic Chemistry of Drug Synthesis, Vols. 1, 2, 3 and 4. New York: John Wiley and Sons.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanAllan, J. A. (1976). Organic Syntheses, Coll. Vol. 4, p. 245. New York, Chichester, Brisbane, Toronto, Singapore. John Wiley & Sons, Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1484-o1485
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds